

Egyptian Journal of Plant

Protection Research Institute

www.ejppri.eg.net

Efficacy of different natural compounds on cotton and tomato whitefly *Bemisia* tabaci (Hemiptera: Aleyrodidae) and its parasitoid *Eretmocerus mundus* (Hymenoptera: Aphelinidae) on vegetable crops

Shaaban, Abd-Rabou¹; El-Amir, S. M.¹ and Xiao-Wei, Wang² ¹Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ²Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

ARTICLE INFO Article History Received: 1 /2/2022 Accepted:28/ 3 /2022

Keywords

Bemisia tabaci, *Eretmocerus mundus*, squash, cucumber, natural compounds, and Egypt. Abstract:

The cotton and tomato whitefly *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) is a widely distributed and highly harmful plant pest species. In this study, we evaluated the insecticidal effects of insecticides and botanical oils against the cotton and tomato whitefly *B. tabaci* infested squash and cucumber and its parasitoid *E. mundus* in Garbiya and Minufiya Governorates, respectively, throughout the experiment period 2020 and 2021. The results indicated that the confidor was the most effective treatment against *B. tabaci* and its parasitoid *Eretmocerus mundus* (Mercet) (Hymenoptera: Aphelinidae). Lemon oil compound caused the lowest reduction against *B. tabaci* and its parasitoid *E. mundus*. It is concluded that essential oil and plant extract are promising compounds to control *B. tabaci* and are safe to survive the parasitoid *E.mundus*.

Introduction

The cotton and tomato whitefly *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae), a pest with piercing-sucking mouthparts, is the most significant pest of agriculture and horticulture worldwide and is widely distributed throughout tropical and subtropical regions (Brown and Bird, 1992 and Abd-Rabou and Simmons, 2010)).

B. tabaci is not a single species but a complex of 46 cryptic species, which are potential vectors of approximately 320 begomovirus species, most of which are significant plant viruses (De Barro *et al.*, 2011). High populations of *B. tabaci* induce losses in plant productivity by direct feeding, fungal growth associated with family Geminiviridae that causes leaf yellow mosaic and mottling, leaf distortion, and stunting (Oliveira *et al.*, 2001 and Morales, 2007). Synthetic chemical pesticides have served as a main tool in crop protection over the past 50 years (Chandler *et al.*, 2011). However, excessive and injudicious use of these

the

honeydew contamination, and plant

physiological disorders. Losses also occur from *B. tabaci* due to the efficient

transmission of Begomovirus, a genus

taxonomic

synthetic pesticides has resulted in management failure and damage to human health and the environment (Palumbo *et al.*, 2001 and Isman, 2006). The use of pesticide products based on "old" chemistry is becoming more

of

difficult and being withdrawn because development of heritable of the resistance and new health and safety legislation (Chandler et al., 2011). Despite the urgent need for alternative tactics, the rate at which new and more environment-friendly chemicals such as biopesticides are being developed is very low (Thacker, 2002). To date, pyrethrum and neem are well established in the marketplace, and plant essential oil products have been recently added to the arsenal (Pimentel, 2005).

of *B*. The management tabaci has been typically carried out by chemical pesticides. In the last decade, however, there has been an increasing interest in natural products, particularly those of plant origin, to control this pest species. In a recent review article by Chandler et al. (2011) only four biopesticides including Bacillus thuringiensis var kurstaki (Bacterium), Beauveria bassiana (Fungus), Cydia pomonella GV (Virus), and azadirachtin (Biochemical) were listed ingredients active as in the representative examples of commercially available biopesticides. For B. tabaci, previous studies indicate pyrethrum, that neem-based formulation, and essential oils have potentials control promising to whiteflies (Golmohammadi et al.. 2014). Simmonds et al. (2002) stated that for the whitefly **Trialeurodes** vaporariorum (Westwood)

(Hemiptera: Aleyrodidae), applications of pyrethrum resulted in fast and high mortality to the adults but also showed high toxicity on a whitefly parasitoid *Encarsia* formosa Gahan (Hymenoptera: Aphelinidae). In the same study, the authors concluded that a commercial neem-based formulation had the most potential for use in an IPM program because the neem product caused 50% mortality of adult whiteflies in 6 h with very low toxicity to the parasitoid.

Limonene an active is insecticidal compound in several pesticides used as insecticides, insect repellents, and dog and cat repellents (Hebeish et al., 2008). The potential adverse effects of insecticides on plants have been studied with various synthetic and natural compounds (Liu et al., 2006). A recent study showed the deterrence and toxicity effects of citronellol and geraniol on B. tabaci (Baldin et al., 2014). In many studies, the activity of essential oil against insects is explained by the major compounds (Ipek et al., 2005). Cruz-Estrada et al. (2013) stated that the most promising compounds of four essential oils (Cumin, cinnamon, citronella, and lemongrass) for pest control applications and the most promising compounds for net treatments were cinnamaldehyde, limonene, citronellol, citronellal, citral, and geraniol because their associated whitefly net-crossing rates were low. The identified volatile candidates may be emitted bv companion plants or by diffusers, e.g., Chemically impregnated nets, to repel whiteflies. Essential oils could be used alone or in mixtures to establish an olfactory barrier as a supplement to the visual and physical barrier of an insectproof net in order to protect vegetables (Deletre et al., 2016).

In this study, we evaluated the insecticidal effects of insecticides and botanical oils against the cotton and tomato whitefly *B. tabaci* infested squash and cucumber and its parasitoid *E. mundus* in Garbiya and Minufiya, Governorates, respectively.

Materials and methods

1. Efficacy of insecticides and botanical oils against the cotton and tomato whitefly *Bemisia tabaci* and its parasitoid:

The current study was carried out to evaluate the field performance of eight insecticides in their respective commercial formulations available on the market. The insecticide generic and chemical information is given in Table (1). The concentrations used were based on the recommendations of the Egyptian Ministry of Agriculture for each insecticide to control the pest insects under field conditions.

A field trial was conducted on squash and cucumber plants grown on a farm located in Garbiya and Minufiya Governorates, respectively, during two consecutive summer seasons of 2020 and 2021. The infested plants with cotton and tomato whitefly were identified, selected, and labeled before the application of insecticides. This area did not receive any insecticidal treatments before the start of the experiment. The trial of nine treatments (Eight insecticides + control) was laid out in a randomized complete block design with three replicates. A spray was applied with a CP3 knapsack sprayer (Cooper Pegler Co. Ltd., Northumberland, England). The used insecticides were in the formulation commercial and the concentrations were prepared using

water as a diluent. Insecticides were sprayed in the early morning when the insects were active. and the environmental conditions minimize the potential risk of spray drift and evaporation. Control plots were sprayed with water only. Thirty plants with a heavy infestation of whitefly and associated the parasitoid were randomly selected in the field. Plant to plant distance was 30 cm. Each plant acted as a replicate. The spray application was done on 20th and 30th October during 2020 and 2021, respectively. Data were recorded on the selected plants before spraying and 7, 14 and 21 days after application. The mean numbers cotton whitefly per plants and associated parasitoid were recorded.

2. Statistical Analysis:

The data were subjected to analysis of variance (ANOVA) and the means were compared with LSD test at 0.05 level, using the SAS. The percent reduction of the whitefly population and associated parasitoid in all treatments compared to the control were calculated according to the Henderson and Tilton formula (1955).

Trade Name	Common Name	Rate/ L Water
KZ oil	Mineral oil	1 Litre oil/ 100 Liter water
Biovar	Beauveria bassiana	200 gm / 100 L.
Bioranza	Metarhizium anisopliae	200 ml/100 L.
Azadirachtin	Azadirachtin indica	5 ml/Lw
Lemon oil	Lemon oil	5 cm/1L
Applaud	Buprofezin	600 cm3 /fed.
Garlic oil extraction	Garlic oil extraction	5 cm/1L
Confidor 20 SL	Imidacloprid	30 cm /100L

Table (1): Insecticides and botanical oils with their trade name, the active ingredient, and rate of application.

Results and discussion

1. Efficacy of insecticides and botanical oils against the cotton and tomato whitefly *Bemisia tabaci* and its parasitoid in Garbiya on squash during 2020-2021:

The obtained data shown in (Tables 2-5) revealed that the confidor was the most effective treatments against *B. tabaci* throughout the

experiment period 2020 and 2021. Whereas the reduction percentage for confidor was 91.97 and 93.35, respectively. In addition, Kz oil gave (89. 17 and 90.22%) reduction followed by garlic oil (85.62 and 86.56%), applaud (85.01 and 84.01), bioranza (83.63 and 85.71), azadirachtin (82.88 and 93.42), biovar (80.53 and 81.17) and lemon oil (80.0 and 78.68), respectively. Considering the probable occurring side effects of the tested compounds on the non-targeted parasitoid E. mundus during 2020 and 2021, the data shown in (Tables 2 to 5) illustrate that lemon oil compound caused a lowest reduction effect (58.86 and 57.5%) followed by ascending by azadirachtin (62.91 and 64.26%), then bioranza (63.71 and 64.26 %), and garlic oil (63.87 and 69.34%) with no significant differences between them. Then confidor, KZ oil, biovar and applaud where they caused highest parasite reduction percentage reached (73.18 and 74.54%), (69.32 and 70.79%), (69.32 and 66.95 %) and (69.95 and 68.88%) in respect without no significant differences between them. Results of statistical analysis (F value and L.S.D.) (Tables, 3-5) showed that seven treatments had significant effect on populations.

2.Efficacy of insecticides and botanical oils against the cotton and tomato whitefly *Bemisia tabaci* and its parasitoid in Minufiya on cucumber 2020-2021:

The obtained data shown in (Tables, 6 - 9) revealed that the confidor was the most effective treatments against B. tabaci throughout the experiment period 2020 and 2021. Whereas the reduction percentage for confidor was 92.02, respectively. In addition, KZ oil (91.58 and 90.85) reduction followed by garlic oil (85.97 and 84.85%), applaud (85.97 and 83.84%), bioranza (84.71 and 85.07), biovar (83.33 and 82.62), azadirachtin (82.67 and 80.40), and lemon oil (79.9 and 81.91), respectively. Considering the probable occurring side effects of the tested compounds on the nontargeted parasitoid E. mundus during 2020 and 2021, the data shown in (Table 6 and 9) illustrate that lemon oil compound caused a lowest reduction effect (62.77 and 53.98 %) followed by ascending by garlic oil (65.76 and 60.87

%), azadirachtin (66.54and60.72 %) and applaud (66.72-62.48) (With no significant differences between them. Then KZ oil, confidor, bioranza, biovar. Where they caused the highest parasite reduction percentage reached (75.58 and 78.45%), (72.78 and 68.42%), (70.61 and 68.4 %) , (68.72and 64.76%) in respect without no significant differences between them.

Results of statistical analysis (F value and L.S.D.) (Tables, 7 and 9) showed that seven treatments had a significant effect on populations.

The results of the present work indicated that Kz oil gave (89. 17 and 90.22%) reduction followed by garlic oil (85.62 and 86.56%), and lemon oil (80.0 and 78.68%), respectively, during the two years under consideration in Garbiya on squash. While KZ oil (91.58 and 90.85%) was reduced followed by garlic oil (85.97 and 84.85%), and (79.9 and lemon oil 81.91%), respectively. during the two years under consideration in Minufiya on cucumber.

Essential oils of Cymbopogon citratus, Cymbopogon winterianus, *Cuminum cyminum* and *Cinnamomumzey* lanicum showed toxic effects at 1%, i.e. 96.3% mortality for cinnamon oil, 64.7% forcitronella oil, 61.0% for lemongrass oil and 30.0% for cumin oil (Deletre et al., 2016). The present work results indicated that the effect of azadirachtin on B. tabaci were (82.88 and 93.42%) in Garbiya on squash and (82.67and 80.40 %) in Minufiya on cucumber 2020-2021, respectively. Plant extracts are currently being studied as an ecologically friendly alternative to manage plant pests. Studies botanical insecticides against B. on tabaci have focused particularly on essential oils of different plants, such as Thymus vulgaris, Allium cepa, Allium Satureja hortensis, Achillea sativum, verum. biebersteinii, Cinnamomum Syzygium aromaticum, Alkanna strigosa, Ballota undulate, Galium longifolium, Lepidium sativum, Peganum harmala,

Pimpinella anisum, Ruta chalepensis, Retama raetam and Urtica pilulifera, where 60-100% mortality has been reported (Ateyyat et al., 2009). Other authors have also documented the insecticidal effects of seed oil from *Azadirachta* indica, and their principle active ingredient azadirachtin on B. tabaci (Aslan et al., 2004; Pinheiro et al., 2009 and Lynn et al., 2010). In general, the insecticidal properties of most of the native and adapted plants in Yucatan have been scarcely studied. In this work, all aqueous and ethanolic extracts of tested plants caused high mortality on B. tabaci eggs, however, on *B. tabaci* nymphs only ethanolic extracts were active (Cruz-Estrada et al., 2013).

Studies on the insecticidal properties of A. squamosa have been focused mainly on the activity of its seed extracts, where activity has been attributed to the metabolites squamocin, annotemoyin and neoannonin, which Diptera, Coleoptera target and Lepidoptera, (Castillo-Sánchez et al., 2010). This is worth noting that among all plant species tested, only in Petiveria alliaceae both types of extracts (Aqueous ethanolic) were active and on immature B. tabaci. The insecticidal activity of extracts of leaves and other organs of *P*. alliaceae has been previously reported. For example, García-Mateos et al. (2007) reported that aqueous, methanolic and dicloromethane extracts of leaves 100% mortality caused on the vaporariorum whitefly Trialeurodes (Westwood). The plant extracts Trichilia arborea showed high insecticidal activity. To the best of our knowledge, no of insecticidal reports activity or chemical constituents of this endemic species was previously available. Nevertheless, Trichilia genus belongs to the Meliacea family, as Azadirachta indica, for instance we might expect T. arborea to have insecticidal properties. Other species of *Trichilia*, like *T. pallida*, has shown insecticidal effects. For

example, Baldin *et al.* (2007) documented those aqueous extracts of branches and leaves of *T. pallida* caused high mortality on *B. tabaci* nymphs in tomato plants under greenhouse conditions.

The plant extracts tested in this study. particularly those of T. *arborea* and *P*. alliaceae showed the potential to be developed into compounds for the management of immature whitefly. Further research will focus on evaluating these extracts through a bioassay-guided process, to determine the metabolites responsible for the insecticidal effect on immatures of B. tabaci. In the long term, our goal is to develop safer alternatives to manage B. tabaci. These natural products might be considered an important component of the integrated pest management system.

The family Aphelinidae contains many *B. tabaci* parasitic wasps including the most important genus E. mundus is indigenous to the Mediterranean region and is used commercially for B. tabaci management in many parts of the world (Urbaneja et al., 2007). The three most promising plant extracts (Alkanna strigosa, Peganum and *Ruta chalepensis*) were harmal tested to determine if they adversely affect *E. mundus*. The results showed that the extracts *P. harmala* and *R*. chalepensis were not detrimental to the parasitoid; however, Α. strigosa adversely affected the emergence of E. *mundus* from *B. tabaci* parasitized pupa. The identification of selective chemicals with little or no harmful effects on the B. tabaci parasitoid is a desirable goal for the development of sound and effective management strategies.

It is concluded that essential oil and plant extract are promising control methods for *B. tabaci* and are safe to survive the parasitoid *E.mundus*. Also, it plays a good role in the integrated management of this pest.

					•	10		~	• 1	~	•	.]
			Ρ	27.1	33.0	34.5 6	31.6	44.8 6	26.2 6	33.7 3	24.2	103. 46
	number		Т	20	41.95	42.28	36.24	52.31	26.81	38.06	18.58	287.0 1
on 2020.	Average		Ν	28.1	61.8	66.66	55.46	81.06	35.16	£8 . 63	27.8	472.1 6
mer seas			A	11.9	22.1	17.9	17.03	23.56	18.46	16.3	9.36	101.8 3
ring sum			Ρ	26.1	31.8	32.8	30.7	42.2	25.2	32.3	22.3	110.0
biya dur		21	N	17.5	43.1	56.0	43.1	65.0	22.5	49.0	18.0	489.3
ts in Gar			A	6.6	19.1	15.3	15.1	18.1	14.8	13.9	6.8	108. 2
ash plan			Ρ	27	32.9	34.7	31.2	44.3	26.1	33.9	24.0	103.3
d on squ		15	Z	28	61.3	64.3	54.0	78.7	36.7	58.3	28.7	47.2
arasitoi			Α	11.7	22.3	18.3	17.9	23.3	19.0	16.3	9.3	101.1
ociated p	unt after		d	28.2	34.3	36.2	32.9	48.1	27.4	35.0	26.3	77.1
id its ass	aying co	7	N	38.9	81.0	79.7	69.3	5 .66	46.3	72.2	26.7	45.7
<i>tabac</i> i an	Post spr		A	14.1	24.9	20.1	18.1	29.3	21.6	18.7	12.0	96.3
Bemisia	unt		Ρ	81.1	83.7	86.2	78.2	8.66	79.3	85.5	83.0	94.6
whitefly,	aying co		N	314	362	408	325.9	433.8	330	429.7	389.4	421.7
cotton v	Pre spr		A	78.8	84.9	87.7	81.3	92.3	82.8	6.06	88.7	91.6
rage numbers of the	Rate of	Applic. /L.W.		1 Litre oil/ 100 Liter water	200 gm / 100 L.	200 ml/100 L.	5 ml/Lw	5 cm/1L	600 cm3 /fed.	5 cm/1L	30 cm /100L	
Table (2): Aver	Treatment			KZ oil	Biovar	Bioranza	Azadirachti n	Lemon oil	Applaud	Garlic oil extraction	Confidor 20 SL	Control

A. Adult N.Nymph P. Parasitoid T. Total

		2											
	%Reduction	on after:			1			;		Average	e %reducti	on	
		15			30			45					
1	A	N	Ρ	Υ	Ν	Р	Ψ	Ν	Р	Ψ	Ν	Т	Р
oil/	82.98	89.4	66.13	86.55	92.13	69.52	89.37	95.28	72.33	86.3	92.05	89.17	69.32
Liter			_								Ab	ab	ab
/ 100	72.11	79.36	60.08	76.21	84.82	64.01	80.96	89.74	67.33	76.42	84.64	80.53 î	63.80 be
nl/100	78.69	84.98	59.09	81.52	85.87	63.14	85.56	88.18	67.28	81.92	85.34	84.13	63.17
												bc	\mathbf{bc}
W,	78.83	80.38	59.02	90.0 6	85.14	63.47	84.28	88.61	66.24	81.05	84.71	82.88	62.91
												c	c
1L	69.81	78.84	53.05	77.13	83.73	59.35	83.4	87.09	63.64	76.78	83.22	80.0	58.68
												с	с
m3 /fed.	75.04	87.06	66.34	60°6L	90.03	69.86	84.78	94.13	72.57	79.63	90.40	85.01	69.59
			_									bc	ab
1L	80.44	84.5	60.12	83.76	87.84	63.7	87.06	90.18	67.52	83.75	87.50	85.62	63.78
			_									ab	bc
1/100L	87.14	91.31	69.13	90.51	93.39	73.52	93.51	96.02	76.9	90.38	93.57	91.97	73.18
												а	а
												3.49	4.43
												6.58	6.70

A. Adult N.Nymph P. Parasitoid T. Total A b c d letters indicating significantly differences between treatments

ļ									Т												~	I
			d	25.4				26.7	72.00	0/.67			30.3	32.1	29.46		25.3		24.76		E0'689	
	number		Т	19.91				37.56	11 11	17.20			32.69	38.9	29.11		24.91		14.0		231.06	
son 2021.	Average		Ν	29.63				57.1	5013	CT.UC			47.96	56.9	36.56		36.4		20.0		372.8	
nmer seas			A	10.2				18.03	C 7 1	14.0			17.43	20.9	21.66		13.43		8.0		89.33	
tring sur			Ρ	22.9				25.5	0 20	5.17			28.4	29.7	28.4		24.4		22.0		95.8	
rbiya du			N	18.1				38.1	101	1.00			37.7	41.9	25.7		28.3		6.9		404.0	
nts in Ga		21	A	6.1				14.1	0.0	6.6			14.8	17.8	19.7		9.4		4.8		94.2	
ıash plar			Ρ	25.1				26.9	10.7	C.67			30.7	32.8	29.0		25.3		24.4		2.68	
id on squ			Ν	29.7				55.9	1.1.1	40.4			45.5	53.1	35.1		36.6		19.0		371.1	
parasitoi		15	A	9.7				17.7	12.0	6.01			17.9	20.7	21.4		31.1		8.3		89.7	
ociated 1	nt after:		Ρ	28.2				27.7	33.1	1.20			31.8	33.9	31.0		26.2		6.7.2		82.1	
nd its ass	ying cou		Ν	41.1				77.3	107	1.40			600.7	75.7	48.9		44.3		34.1		34.33	
<i>a tabaci</i> an	Post spra	7	Α	14.8				22.3	10.1	1.41			19.6	24.2	23.9		17.8		10.9		84.1	
1, Bemisi	nt		Ρ	78.8				72.7	E C 0	1.00			76.6	68.4	85.5		74.7		88.2		6. 67	
whitefly	ring cour		Ν	328.3				301.3	245 3	240.4			316.4	289.9	361.2		293.2		377.0		320.2	1-7- H
the cotton	Pre spray		Α	82.1				79.6	C 70	1.40			80.9	75.9	86.3		<i>0.17</i>		87.1		81.9	T
numbers of	Rate of	Applic.	/L.W.	1 Litre	oil/ 100	Liter	water	$200 \text{ gm} / 100 \text{ L}_{\odot}$		2002	ml/100	L.	5 ml/Lw	5 cm/1L	600 cm3	/fed.	5 cm/1L		30 cm	/100L		
Table (4): Average I	Treatment			KZ oil				Biovar	Diaman	DIOFAIIZA			Azadirachtin	Lemon oil	Applaud		Garlic oil	extraction	Confidor 20 SL		Control	IN A JF A

A. Adult N.Nymph P. Parasitoid T. Total

70

son 2020.			Ρ	70.79	ab	66.84	ab	67.84	$^{\mathrm{ab}}$	64.26	\mathbf{bc}	57.51	c	68.88	ab	69.43	ab	73.88	в	3.38	7.98	
ummer sea	_			90.22	ab	81.17	c	85.71	ab	83.42	bc	78.68	c	84.01	\mathbf{bc}	86.56	abc	93.35	а	2.79	8.48	
a during sı	6reduction		N	92.05		83.35		87.22		86.75		82.8		91.12		89.16		95.26				
s in Garbiy	Average %		Α	88.40		0.67		84.20		80.10		74.56		76.9		83.97		91.44				
uash plants			Ρ	75.77		70.75		72.2		69.08		63.79		72.3		72.76		77.2				
itoid on sq		45	Ν	95.64		86.98		91.21		90.56		88.55		94.37		92.35		98.55				
d its paras			Υ	93.55		84.6		89.78		84.1		79.62		80.3		89.51		95.2				
<i>a tabaci</i> an			Ρ	71.47		66.86		68.65		64.11		57.05		69.62		69.67		75.22				
fly, Bemisi		30	Ν	92.2		84.0		89.14		9.78		84.2		91.62		89.23		95.66				
otton white			Α	89.22		T.9T		84.93		79.8		75.1		77.36		84.65		91.3				
ds on the co			Ρ	65.13		62.92		62.68		59.6		51.7		64.72		65.87		69.22				
t compound	iction after	15	Ν	88.33		76.08		81.33		82.11		75.65		87.38		85.91		91.57				otal
differen	%Redi		Α	82.4	S	72.7	2	<i>0.77</i>	1	76.4	1	68.9	6	73.0	4	77.7	S	87.8	7			id T. T
on percentage of	Rate of	Applic. /L.W.		1 Litre oil/ 100	Liter water	200 gm / 100	L.	200 ml/100 L.		5 ml/Lw		5 cm/1L		600 cm3 /fed.		5 cm/1L		30 cm/100L				nh P. Parasito
Table (5): Reduction	Treatment			KZ oil		Biovar		Bioranza		Azadirachtin		Lemon oil		Applaud		Garlic oil	extraction	Confidor 20	SL	F value	L.S.D.	A. Adult N.Nvm

A. Adult N.Nymph P. Parasitoid T. Total A b c d letters indicating significantly differences between treatments

Table (6): Avera	ge numbers	of the c	otton whit	efly, Ben	iisia tabad	ci and its	associat	ed paras	itoid on e	admube	r plants i	in Minufi	iya durin	g summe	r season	2020.	
Treatment	Rate of	Pre spi	aying cou	nt	Post spr	aying co	unt aftei	:							Average	number	
	Applic.				15			30			45						
	/L.W.	Α	N	Ρ	Α	Ν	Ρ	Α	Z	Ρ	Α	N	Ρ	Α	Z	Т	Ρ
KZ oil	1 Litre	91.2	414.1	93.7	13.9	40.0	27.3	11.0	30.9	26.0	7.3	19.3	24.9	10.73	30.06	20.39	26.06
	oil/ 100																
	Liter water																
Biovar	200 gm / 100 L.	87.7	387.2	86.3	21.1	75.0	32.1	19.0	63.2	31.0	16.8	51.2	30.0	18.96	63.13	41.04	31.03
Bioranza	200	93.7	431.3	98.2	22.0	76.6	34.0	18.1	64.3	33.1	16.3	49.0	32.5	18.8	63.3	41.05	33.2
	ml/100 L.																
Azadirachtin	5 ml/Lw	97.8	482.0	102.1	23.9	101.0	41.1	21.3	83.9	38.8	18.9	69.0	37.9	21.36	84.63	52.99	39.26
Lemon oil	5 cm/1L	89.9	406.4	91.1	26.1	93.3	39.8	23.0	81.0	38.9	20.2	6.69	38.4	23.1	81.4	52.25	39.03
Applaud	600 cm3 /fed.	94.7	449.1	96.3	22.1	67.9	37.7	20.7	55.6	37.0	17.0	38.3	35.9	19.93	53.93	36.93	36.86
Garlic oil	5 cm/1L	88.9	382.0	0.06	18.9	61.5	36.0	16.8	52.0	35.5	15.6	36.7	34.9	17.1	50.06	33.58	35.46
extraction																	
Confidor 20 SL	30 cm /100L	85.9	351.2	83.8	12.0	33.1	28.0	9.1	24.0	26.2	7.3	17.1	24.3	9.46	24.73	17.09	26.1
Control		95.7	4221.0	91.2	103.2	449.3	76.7	111.3	468.1	104.3	122.1	499.7	115.9	112.2	472.3	292.25	105.6

A. Adult N.Nymph P. Parasitoid T. Total

												· · · · ·	0	
Treatment	Rate of	%Reduction	on after:								Average %	6 reduction		
	Applic.		15			30			45					
	/L.W.	Υ	N	Р	A	N	Р	Α	Ν	Ρ	Α	Z	Т	Ρ
KZ oil	1 Litre oil/	85.87	90.93	72.53	89.63	93.28	75.74	93.73	96.07	79.09	89.74	93.42	91.58	75.78
	100 Liter												ab	B
	water													
Biovar	200 gm /	77.69	81.81	64.92	81.38	85.29	68.6	84.99	88.84	72.65	81.35	85.31	83.33	68.72
	100 L.												С	bc
Bioranza	200	78.23	83.32	67.35	83.4	86.56	71.24	86.37	90.41	73.96	82.66	86.76	84.71	70.61
	ml/100 L.												С	ab
Azadirachtin	5 ml/Lw	77.34	80.32	62.04	81.28	84.31	66.78	84.86	87.91	70.8	81.16	84.18	82.67	66.54
													С	\mathbf{bc}
Lemon oil	5 cm/1L	73.08	78.44	58.8	78.01	82.03	62.67	82.39	85.48	66.84	77.82	81.98	6. 67	62.77
													С	c
Applaud	600 cm3	78.36	85.8	63.08	81.21	88.84	66.41	85.93	92.8	70.67	81.83	89.14	85.48	66.72
	/fed.												\mathbf{Bc}	bc
Garlic oil	5 cm/1L	80.29	84.88	62.28	83.76	88.32	65.51	86.25	92.33	69.49	83.43	88.51	85.97	65.76
extraction													$\mathbf{A}\mathbf{b}$	J
Confidor 20 SL	30 cm	87.05	91.15	68.49	90.9	93.84	72.67	93.34	95.89	77.19	90.43	93.62	92.02	72.78
	/100L												A	ab
F value													4.20	3.58
L.S.D.													6.16	6.66
A A Jult NI Numer	ah D Dauga	11 T T.	.40											

Table (7): Reduction percentage of different compounds on the cotton whitefly, Bemisia tabaci and its parasitoid on cucumber plants in Minufiya during summer season 2020.

A. Adult N.Nymph P. Parasitoid T. Total A b c d letters indicating significantly differences between treatments

<u>Treatment</u>	ige numbers Rate of	of the col Pre spr	<u>tton whit</u> aying cot	etty, <i>Ben</i> unt	Post spi	<i>cu</i> and us raying co	associat	eu paras		cucumo	er plants		liya aur	ing sumi	Average	e number	
	Applic.	I			15			30			45						
	/L.W.	A	Z	Ь	V	Z	d	V	Z	P	¥	N	P	V	N	Т	Ь
KZ oil	1 Litre oil/ 100 Liter water	89.3	395.8	91.3	13.8	42.4	30.0	10.4	37	28.8	7.4	23.7	27.4	10.53	34.36	22.44	28.73
Biovar	200 gm / 100 L.	96.6	465.9	111.0	25.3	88.9	46.0	21.5	76.6	45.7	19.1	66.0	44.8	21.96	77.16	49.56	45.5
Bioranza	200 ml/100 L.	85.6	361.4	83.9	18.9	65.7	32.0	16.1	53.0	31.3	14.9	35.2	29.0	16.63	51.3	33.96	30.76
Azadirachtin	5 ml/Lw	92.9	427.8	107.2	25.0	91.2	51.1	22.9	86.0	48.7	21.1	73.9	46.9	23.0	83.7	53.35	48.9
Lemon oil	5 cm/1L	98.1	481.0	118.3	24.6	88.7	64.0	22.8	83.3	63.5	21.9	80.2	62.5	23.1	84.06	53.58	63.33
Applaud	600 cm3 /fed.	87.8	392.7	89.8	25.9	58.8	40.8	22.8	41.0	38.7	18.7	28.8	37.9	22.46	42.86	32.66	39.13
Garlic oil extraction	5 cm/1L	90.3	398.9	96.1	21.7	65	45.0	19.0	49.3	43.9	16.8	41.3	42.2	19.16	51.86	35.51	43.7
Confidor 20 SL	30 cm /100L	93.1	433.4	98.2	14.0	41.8	31.1	11.1	28.3	30.8	7.1	15.9	29.0	10.7	28.6	19.65	30.3
Control		91.8	409.2	96.2	97.1	425.3	103	106.5	454	113.3	117	489.6	121.3	106.8	456.3	281.55	112.46
A. Adult N.N.	mph P. Pa	arasitoid	T. Toti	a													

Table (9): Reduction percentage of	different com	pounds or	n the cotto	n whitefly	1, Bemisia	<i>tabaci</i> an	d its para	asitoid on	cucumbe	er plants i	in Minufiy	ya during	summer	season 20	021.
Treatment	Rate of	%Redu	ction after								Average	%reduct	ion		
	Applic.		15			30			45)				
	AL.W.	Υ	Ν	Ρ	V	Ν	Р	Υ	Ν	Р	A	Ν	Т	Ρ	
KZ oil	1 Litre	85.39	7.68	69.31	<i>L6</i> .68	91.58	73.22	93.5	95.0	76.16	89.62	92.09	90.85	72.89	
	oil/ 100												ab	а	
	Liter														
	water														
Biovar	200 gm /	75.32	81.65	61.3	88.08	85.19	65.05	84.54	88.17	67.94	80.24	85.0	82.62	64.76	
	100 L.												J	\mathbf{bc}	
Bioranza	200	79.13	82.51	64.38	83.79	86.79	68.33	86.35	91.86	72.55	83.09	87.05	85.07	68.42	
	ml/100 L.												bc	ab	
Azadirachtin	5 ml/Lw	74.56	79.49	55.48	78.76	81.89	61.43	82.18	85.56	65.25	78.5	82.31	80.40	60.72	
													С	cd	
Lemon oil	5 cm/1L	76.3	82.62	49.48	L6.6L	84.4	54.43	82.49	86.07	58.04	79.58	84.24	81.91	53.98	
													С	d	
Applaud	600 cm3	72.12	85.6	57.57	77.62	90.59	63.41	77.62	93.88	66.48	77.67	90.02	82.91	62.48	
	/fed.												С	bc	
Garlic oil extraction	5 cm/1L	77.29	84.33	56.27	81.87	88.87	61.22	85.41	91.35	65.12	81.52	88.18	84.85	60.87	
													\mathbf{bc}	cd	
Confidor 20 SL	30 cm	85.79	90.73	70.43	£7.68	94.12	73.37	94.02	96.74	76.55	89.84	93.93	91.88	73.45	
	/100L												а	а	
F value													4.09	8.01	
L.S.D.													6.17	7.02	
A. Adult N.Nymph P. Parasitoi	id T. Total														

A b c d letters indicating significantly differences between treatments

75

References

- Abd-Rabou, S. and Simmons, A.M. (2010): Survey of Reproductive Host Plants of *Bemisia tabaci* (Hemiptera: Aleyrodidae) in Egypt, including New Host Records. Entomological News, 121: 456-465. http://dx.doi.org/10.3157/021.1 21.0507.
- Ateyyat, M.A.; Al-Mazra, A. M.; Abu-Rjai, T. and Shatnawi, M.A. (2009): Aqueous extracts of some medicinal plants are as toxic as imidacloprid to the sweet potato whitefly, *Bemisia tabaci*. Journal of Insect Science, 9:15.
- Baldin, E.L.L.; Vendramim, J.D. and Lourenção, A.L. (2007): Interaction between resistant tomato genotypes and plant extracts on *Bemisia tabaci* (Genn.) biotype B. Scientia Agricola, 64 (5): 476-481.
- Brown, J.K. and Bird, J. (1992): Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin. Plant Disease, 76(3): 220-225.
- Castillo-Sánchez, L.E.; Jiménez-Osornio, J.J. and Delgado-Herrera, M.A. (2010): Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Tropical and Subtropical Agroecosystems, 12(3): 445-462.
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J. and Grant, W.P. (2011): The development, regulation and use of biopesticides for integrated pest management. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 366 (1573):1987–1998.
- Cruz-Estrada, A. ; Gamboa-Angulo, M.; Borges-Argáez, R. and Ruiz-Sánchez, E. (2013): Insecticidal effects of plant extracts on immature whitefly *Bemisia tabaci* Genn. (Hemiptera: Aleyroideae). Electronic Journal of

Biotechnology, 16(1). http://dx.doi.org/10.2225/vol16issue1-fulltext-6.

- De Barro, P.J.; Liu, S.S.; Boykin, L.M. and Dinsdale, A.B. (2011): Bemisia tabaci: a statement of species status. Annu. Rev. Entomol., 56: 1-19.
- Deletre, E.; Chandre, F.; Barkman, B. ; Menutc, C. and Martina, T. (2016): Naturally occurring bioactive compounds from four repellent essential oils against *Bemisia tabaci* whiteflies. Pest Manag. Sci., 72: 179–189.
- García-Mateos, M.R.; Elizalde-Sánchez, E.; Espinosa-Robles, P. and Álvarez-Sánchez, M.E. (2007): Toxicity of *Petiveria alliacea* L. on greenhouse whitefly (*Trialeurodes vaporariorum* West.). Interciencia, 32(2): 121-124.
- Golmohammadi, G.; Hosseini-Gharalari, A.; Fassihi, M. and Arbabtafti, R. (2014): Efficacy of one botanical and three synthetic insecticides against silverleaf whitefly, *Bemisia tabaci* (Hemiptera: Aleyrodidae) on cucumber plants in the field. J. Crop Prot., 3(4):435–441.
- Hebeish, A.; Fouda, M.M.; Hamdy, I.A.; El-Sawy, S.M. and Abdel-Mohdy, F.A. (2008): Preparation of durable insect repellent cotton fabric: limonene as insecticide. Carbohydr Polym, 74(2):268–273.
- Henderson, C. F. and Tilton, E. W. (1955): Test with acaricides against the brown wheat mite. J. Econ. Entom., 48: 157 -161.
- Ipek, E.; Zeytinoglu, H.; Okay, S.; Tuylu, B.A.; Kurkcuoglu, M. and Husnu, Can Baser K. (2005): Genotoxicity and antigenotoxicity of origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem., 93:551–556.
- **Isman, M.B. (2006):** Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated

world. Annu. Rev. Entomol., 51:45–66.

- Liu, C.H.; Mishra, A.K.; Tan, R.X.; Tang, C.; Yang, H. and Shen, Y.F. (2006): Repellent and insecticidal activities of essential oils from *Artemisia princeps* and *Cinnamomum camphora* and their effect on seed germination of wheat and broad bean. Bioresour Technol., 97(15):1969–1973.
- Lynn, O.M.; Song, W.G.; Shim, J.K.; Kim, J.E. and Lee, K.Y. (2010): Effects of azadirachtin and neembased formulations for the control of sweet potato whitefly and rootknot nematode. J. Korean Soc. Appl. Biol. Chem., 53(5):598–604.
- Morales, F.J. (2007): Tropical whitefly IPM project. Advances in Virus Research, 69:249-311.
- Oliveira, M.R.V.; Henneberry, T. J. and Anderson, P. (2001): History, current status, and collaborative research projects for *Bemisia tabaci*. Crop Prot., 20: 709-723.
- Palumbo, J.C.; Horowitz, A.R. and Prabhaker, N. (2001): Insecticidal control and resistance management for *Bemisia tabaci*. Crop Prot., 20(9):739–765.
- **Pimentel, D. (2005):** Environmental and economic costs of the

application of pesticides primarily in the United States. Environ. Dev. Sustain., 7(2):229–252.

- Pinheiro, P.V.; Quintela, E.D.; De Oliveira, J.P. and Seraphin, J.C. (2009): Toxicity of neem oil to *Bemisia tabaci* biotype B nymphs reared on dry bean. Pesquisa Agropécuaria Brasileira, 44(4): 354-360.
- Simmonds, M.S.J.; Manlove, J.D.; Blaney, W.M. and Khambay, B.P.S. (2002): Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly *Trialeurodes vaporariorum* and the parasitoid *Encarsia formosa*. Entomol. Exp. Appl., 102(1):39-47.
- Thacker, J.R. (2002): An introduction to arthropod pest control. Cambridge University Press, Cambridge.
- Urbaneja, A.; Sánchez, E. and Stansly, P. (2007): Life history of *Eretmocerus mundus*, a parasitoid of *Bemisia tabaci*, on tomato and sweet pepper. Bio Control, 52:25–39.