

Egyptian Journal of Plant Protection Research Institute

www.ejppri.eg.net

Lethal and sublethal impacts of some biopesticides against the black cutworm, *Agrotis ipsilon* (Lepidoptera: Noctuidae)

Reda, R. H. Abdullah and Hanaa, M. Raghib

Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.

ARTICLE INFO

Article History Received:22 /4/2025 Accepted:19 /6/2025

Keywords

Black cutworm, insecticidal activity, detoxifying enzymes, insect development and pots experiment

Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), a black cutworm, is a serious early-season soil pest of cotton, vegetables, and several field crops. Relatively little is known about the effectiveness of applying biopesticides against this pest. So, this research was conducted to evaluate the effectiveness of four biopesticides Emamectin (Spinosad, Abamectin, benzoate, and thuringiensis) on the survival and growth rate of the black cutworm, A. ipsilon. The findings indicated significant differences in the impact of each biopesticide on the larvae, with Emamectin benzoate showing the highest efficacy in increasing mortality percentages, followed by Spinosad, Abamectin, and B. thuringiensis under laboratory conditions. In addition, the results of the pot experiment indicated that the Emamectin benzoate was more effective in protecting plants from damage compared to both the untreated control and the standard pesticide. Additionally, the growth rates of the black cutworm life stages were notably affected negatively; also, significant changes were found in the activity of estimated detoxifying enzymes and total protein in treated larvae compared to the control group. This indicates that the use of Emamectin benzoate not only reduces pest populations but also disrupts their biological processes, making it a promising option for sustainable pest control. Such findings highlight the potential for biopesticides to serve as effective tools in integrated pest management strategies.

Introduction

The black cutworm is a lepidopteran insect pest that has the ability to destroy several economic crops in many countries. The scientific name of the black cutworm is *Agrotis ipsilon* (Hufnagel), which belongs to the order Lepidoptera and family Noctuidae. The larvae of this insect cut the plant stem near the ground, which led to plant death in the early stage (Binning *et al.*, 2015). The black cutworm larva stage has six instars and

can consume 400 cm² of foliage during the larva stage (Amin *et al.*, 2019).

The selection of highly effective and safe insecticides is the main goal of integrated pest management strategies. There are few recorded insecticides in Egypt against A. cypermethrin, ipsilon, such as alphacypermethrin, lambda-cyhalothrin, chlorpyrifos. All recommended the insecticides chemical are synthetic insecticides, which cause soil contamination.

There are no biopesticides recommended against A. ipsilon, such as Bacillus thuringiensis, spinosad, and abamectin and emamectin benzoate, according recommendations of Agricultural the Pesticide Committee of the Ministry of Agriculture and Land Reclamation in 2020, 2021, 2022, 2023, and 2024 in Egypt. In addition, few studies were carried out on the effectiveness of biopesticides against black cutworm in Egypt. In spite of most biopesticides being effective pesticides against the order Lepidoptera insects. B. thuringiensis (Bt) is used to control lepidopteran insect pests such as Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) (Alfazairy et al., 2013), Tuta absoluta (Lepidoptera:Gelechiidae) (Alsaedi et al., 2017), and Spodoptera frugiperda (J. (Lepidoptera: E. Smith) Noctuidae) (Karshanal and Kalia, 2023). Also, Spinosad is recommended to control many Lepidoptera insects like S. frugiperda (Meendez et al., 2002), S. littoralis and S. frugiperda (Abdullah and Sukar, 2025), S. littoralis and Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) (Sukirno et al., 2017), Sesamia cretica Lederer (Lepidoptera: Noctuidae) (Osman et al., 2014), and T. absoluta (Bratu et al., 2016). In addition, Emamectin benzoate has high toxic effects against several insects belonging to the order Lepidoptera, like S. littoralis (Moustafa et al., 2018), T. absoluta (Gacemi and Guenaoui, 2012), Mamestra brassicae (Moustafa et al., 2016), and S. frugiperda (Koffi et al., 2022). Also, Abamectin is able to control many insects such as T. absoluta (Hanash, 2023), Plutella xylostella (Morsy and Elwan, 2021), S. littoralis and S. frugiperda (Abdullah and Sukar, 2025), and S. frugiperda (Attia et al., 2023). There are many commercial formulations of these biopesticides in the Egyptian market, according Agricultural Pesticide Committee of the

Ministry of Agriculture and Land Reclamation. So, the aim of this study is to evaluate some biopesticide formulations such as Abamectin, Spinosad, Emamectin benzoate, and *B. thuringiensis* (Bt) against the black cutworm *A. ipsilon* and investigate their effects on the insect development rate and its detoxifying enzymes.

Materials and methods

1. Insect breeding procedure:

Third instar larvae of A. ipsilon were kindly obtained from the Plant Protection Department, Faculty of Agriculture, Cairo University. Larvae were reared on castor leaves until the pupation stage at 27°C and 65% RH. The pupae were transferred to glass jars (30 cm height and 20 cm diameter) that were covered by muslin until the adult emergence. The obtained adults were fed on a 10% sucrose solution until egg-laying. Tissue paper strips were put in jars for egglaying. Eggs were collected every day and transferred to glass jars (20 cm height and 20 cm diameter) until hatching. After hatching, the larvae were fed on clean castor leaves. A thin layer of sawdust was put in the bottom of the larvae jars. The larvae were reared to obtain the suitable instar for experiments as described by Ismail (2021).

2. The tested biopesticides:

Commercial formulations of Spinosad 24% SC, Abamectin 1.8% EC, Emamectin benzoate 2.3% EC, *Bacillus thuringiensis* 9.4% WP, and Alpha-Cypermethrin 10% EC were supplied by the Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt.

3. Lethal impact procedures of tested biopesticides:

3.1. Bioassay under laboratory conditions:

Five serial concentrations of each tested pesticide were prepared, based on all concentrations being less than the field-recommended rate of each pesticide. Twenty larvae of the 2nd instar, as well as the same number of the 4th instar, were transferred to

jars (20 cm * 20 cm) with a thin layer of sawdust under the larvae. The leaf-dipping bioassay method was applied to evaluate the toxicity of the tested biopesticides against black cutworm. Pieces of castor leaves were dipped in the pesticide solution for 30 seconds and left to air dry. The treated leaves were transferred to larvae jars and covered by muslin. Alpha-cypermethrin was used as the standard pesticide; water was used to treat the control group. Each treatment was replicated four times. The dead larvae were recorded every day. The mortality percentages were counted and corrected by Abbott's formula (Abbott, 1925).

3.2. Bioassay under semi-field conditions:

Sixty plastic pots (size 40 cm) were filled with agricultural soil. Ten cotton seeds (Giza 86) were planted in each pot. After the seeds germinated and five true leaves appeared, poison bait was prepared (1 kg of wheat bran, 100 gm of molasses, 500 ml of water, and the LC₉₀ of biopesticide) and applied in equal quantities near the plants grown in the pots. The control group was treated with the baits without pesticide. Ten of the 4th instar larvae were added to each pot (A larva/plant). Ten plastic pots were used for each pesticide and control. Three days after the treatment, healthy and infected plants were counted, and the infection rate in each treatment was calculated. The experiment was conducted outdoors on the farm of the Dakahliah Agricultural Directorate.

4. Sublethal impact procedures of tested biopesticides:

4.1. Determination of the insect development rate after treatment:

The sublethal concentration (LC₂₅) of each tested pesticide was prepared. Fifty larvae of the 2nd instar of the same size were selected and transferred to ten jars (5 larvae per 0.5L jar). Pieces of castor leaves were dipped in the pesticide solution and left to air dry. The treated leaves were presented to the larvae in the treated jars group; also,

untreated leaves were presented to the larvae in the control jars group. The larvae were allowed to feed on treated leaves for three days, after which untreated leaves were provided to larvae in all jars until the end of the experiment. The larval period, pupation percentage, pupae with deformities, pupae period, pupae weight, adult emergence, sex ratio, and adults with deformities were recorded as described by Ismail (2024).

4.2. Estimation of some detoxifying enzymes' activity after treatment:

The median lethal concentration (LC₅₀) of each pesticide was prepared. Pieces of castor leaves were dipped in the pesticide solutions for 30 seconds and then allowed to air dry. Twenty larvae of the fourth instar were transferred to jars (1L). The treated castor leaves were presented to larvae in the treatment jars, and untreated castor leaves were used for larvae in the control jars. After four days, the live larvae were collected from each treatment and weighed. Phosphate buffer (pH 7) was added to larvae (1 gm: 5 ml), and the mixture was homogenized and centrifuged. One ml of the supernatant was transferred to an Eppendorf tube and frozen under -20°C until enzyme estimation. The enzyme kits of the bio-diagnostic company, Egypt, were used to estimate the detoxifying enzymes. The acetylcholine esterase (AchE) was estimated according to Simpson et al. (1964) at 515 nm, the glutathione Stransferase (GST) was estimated according to Pan et al. (2016) at 540 nm, alanine transaminase (ALT) and aspartate transaminase (AST) were estimated according to Reitman and Frankel (1957) at 520 nm, acid phosphatase (ACP) was estimated according to Powell and Smith (1954), and the total protein was estimated according to Gornal et al. (1949) at 550 nm.

5. Statistical analysis:

Data from the bioassay experiment were calculated and corrected by Abbott's formula (Abbott, 1925). The lethal and sublethal

concentrations (LC₂₅, LC₅₀, and LC₉₀) at a 95% confidence limit and slope values were calculated by the Finney method (Finney, 1971) using LDP-line software. The Sun equation was used to calculate the toxicity index according to Sun (1950). The results of enzyme activities and insect development rate were subjected to analysis of variance (ANOVA) by using SAS software (SAS, 1997).

Results and discussion

According to the recommendations of the Pesticides Committee of the Ministry of Agriculture and Land Reclamation, there are no recommended biopesticides against black cutworm, A. ipsilon. In addition, few studies were conducted to evaluate the biopesticides against A. ipsilon. Therefore, this study was concerned with evaluating the efficacy of four biopesticides (Spinosad, Abamectin, Emameetin benzoate, and B. thuringiensis) against black cutworms and comparing their efficacy to one recommended pesticide (Alpha-Cypermethrin). The lethal and sublethal concentrations of tested pesticides were used to determine the impact of these biopesticides on the survival of larvae, the activity of specific detoxification enzymes, and the rate of insect development.

1. Lethal impacts of tested biopesticides:

1.1. Toxicity of biopesticides tested under laboratory conditions:

Tables (1 and 2) display the toxicity of tested pesticides against the 2nd and 4th instar larvae of A. ipsilon after two days of treatment under laboratory conditions. The second and fourth instar larvae of A. ipsilon were found to more sensitive to the biopesticide Emamectin benzoate than other tested pesticides. The toxicity index values illustrate that the most effective pesticide (100%) was Emamectin benzoate, where its LC₅₀ was 1.14 ppm for the 2nd instar and 1.48 ppm for the 4th instar larvae. Emamectin benzoate was a highly effective pesticide compared to the standard pesticide (Alpha-Cypermethrin) and other tested pesticides. In addition, the toxicity of Emamectin benzoate against the 2nd and 4th

instar larvae was almost equal. The Spinosad pesticide was approximately equal to the standard pesticide in the toxicity effect against the 2nd instar larvae. The 4th instar larvae were less sensitive to Spinosad compared to the standard pesticide. Abamectin and *B. thuringiensis* were fewer effective pesticides compared to other tested pesticides against the 2nd and 4th instar larvae. The results in Tables (1 and 2) illustrate that the 2nd instar larvae were more sensitive to all tested pesticides than the 4th instar larvae, except with Emamectin benzoate; the toxicity was mostly equal.

2.1. Efficacy of tested biopesticides under semi-field conditions:

The pot experiment was carried out outdoors by using the calculated concentration (LC₉₀) of each pesticide based on laboratory bioassays against the fourth instar larvae of A. ipsilon. The damage percentages of cultivated cotton plants were decreased in the treated pots Emamectin benzoate (6%),Alpha-Cypermethrin (14%),Spinosad (22%),Abamectin (34%), and B. thuringiensis (38%) compared to the plants in the control group (82%), as shown in Figure (1). This suggests that Emamectin benzoate is more effective in protecting plants from damage compared to both the untreated control and the standard pesticide.

2. Sublethal impacts of tested biopesticides:2.1. Effect of tested biopesticides on insect development rate:

There are significant changes in all growth stages of A. ipsilon among treatments compared to the control group, as shown in Table (3). All tested pesticides caused negative changes in the measured biological aspects of A. ipsilon at LC25. Emamectin benzoate was a more effective pesticide on all measured biological aspects compared to the control group and other tested pesticides. The total duration of larvae and pupa was increased in the larvae treated by Emamectin benzoate (60.5 days), more than other tested pesticides, followed by Alpha-Cypermethrin (54.5 days) and B. thuringiensis (53 days), compared to 41.5 days in the control group, as shown in Figure (2).

Egypt. J. Plant Prot. Res. Inst. (2025), 8 (2): 178 -188

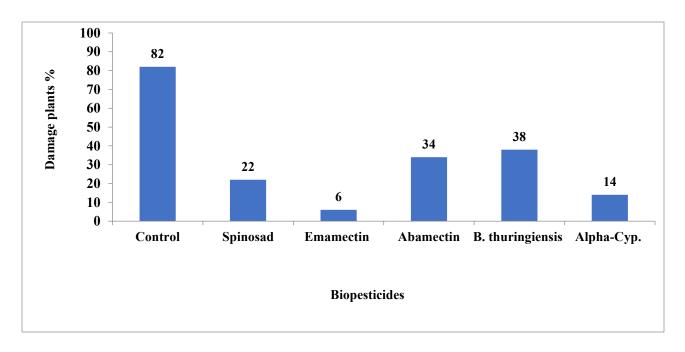


Figure (1): The percentage of plants damaged by Agrotis ipsilon larvae in the pots experiment after 3 days of treatment.

Table (1): Toxicity of tested biopesticides against the 2nd instar of Agrotis ipsilon larvae after 2 days of treatment under laboratory conditions.

Table (1): Toxicity of tested biopesticides against the 2 mistar of Agrous tpsuon far vae after 2 days of treatment under laboratory conditions.							
Treatments	LC ₂₅ (ppm) (C.l. 95%)	LC ₅₀ (ppm) (C.l. 95%)	LC ₉₀ (ppm) (C.l. 95%)	$Slope \pm SE$	Chi square (x²)	Toxicity Index (%)	
Spinosad	9.9 (7.54 -12.08)	19.52 (16.64-22.49)	70.7 (56.47-97.16)	2.29 ± 0.23	5.14	5.84	
Emamectin benzoate	0.29 (0.03 - 0.63)	1.14 (0.69-1.54)	9.33 (6.66-16.55)	1.14 ± 0.21	2.61	100	
Bacillus thuringiensis	42 (28 - 55)	105 (85-126)	606 (433-1023)	1.68 ± 0.21	5.49	1.09	
Abamectin	14.21 (11.21-17.46)	38.71 (29.9-57.64)	259 (139-771)	1.55 ± 0.22	1.07	2.94	
Alpha-Cypermethrin	6.07 (2.92-9.27)	18.79 (13.43-23.78)	161 (107-327)	1.37 ± 0.20	0.13	6.07	

C.l. 95% = Confidence limit at 95%. The units of LC₅₀ and LC₉₀ is part per million (ppm). SE = Standard error Toxicity index = (LC₅₀ of the most effective pesticide / LC₅₀ of other pesticide) *100

Abdullah and Raghib, 2025

Table (2): Toxicity of tested biopesticides against the 4th instar of Agrotis ipsilon larvae after 2 days of treatment under laboratory conditions.

Treatments	LC ₂₅ (ppm) (C.l. 95%)	LC ₅₀ (ppm) (C.l. 95%)	LC ₉₀ (ppm) (C.l. 95%)	Slope ± SE	Chi square (x²)	Toxicity Index (%)
Spinosad	32.32 (26 - 38)	73.6 (61 - 94)	351 (229 - 689)	1.88 ± 0.22	4.33	2.01
Emamectin benzoate	0.38 (0.15 - 0.75)	1.48 (0.47 - 2.46)	31.65 (18 - 112)	0.96 ± 0.20	4.4	100
Bacillus thuringiensis	48 (23 -73)	137 (98 - 172)	1731 (1065 - 4135)	1.49 ± 0.22	0.525	1.08
Abamectin	20.97 (12 - 29)	112 (81 - 182)	2718 (1043 - 15651)	0.92 ± 0.14	0.18	1.32
Alpha-Cypermethrin	7.26 (5 - 10)	30.89 (24 - 41)	483 (245 - 1492)	1.07 ± 0.14	1.92	4.79

C.l. 95% = Confidence limit at 95%. The units of LC₅₀ and LC₉₀ is part per million (ppm). SE = Standard error Toxicity index = (LC₅₀ of the most effective pesticide / LC₅₀ of other pesticide) * 100

Table (3): Sublethal effects of tested biopesticides on the properties of development stages in the third instar larvae of Agrotis ipsilon

Properties of development stages	Control	Spinosad	Abamectin	Emamectin benzoate	B. thuringiensis	Alpha-Cypermethrin	LSD (0.05)	F. value	P. value
Larvae period (days)	19.5e	24.5°	22.5 ^d	29.5ª	25°	27.5 ^b	0.91	142 ***	0.0000
Pupation rate (%)	93ª	74 ^b	94ª	54°	24 ^d	76 ^b	2.74	886 ***	0.0000
Deformities Pupae (%)	1 ^f	11 ^d	19 ^b	23ª	16.7°	3e	2.06	187 ***	0.0000
Pupae period (days)	22 ^d	27 ^b	24°	31ª	28 ^b	27 ^b	2.10	22 ***	0.0000
Pupae weight (gm) 🖒	0.4034ª	0.3866 ^b	0.3381 ^e	0.2899 ^f	0.3648 ^d	0.3766°	0.0019	4061 ***	0.0000
Pupae weight (gm) ♀	0.4459 ^b	0.4271°	0.3843°	0.3001 ^f	0.4691 ^a	0.3928 ^d	0.0016	11976 ***	0.0000
Adult emergence (%)	97.5ª	87.8 ^b	89.5 ^b	67 ^d	80°	81°	2.66	144 ***	0.0000
Sex ratio ((♀/(♀ + ♂)) (%)	46°	48.5°	47°	51 ^b	70^{a}	35 ^d	2.43	208	0.0000
Adults with deformities (%)	3e	76 ^{ab}	59°	78ª	75 ^b	53 ^d	2.71	1044	0.0000

Duncan test at significance level 0.05. The same letters in the row mean no significant.

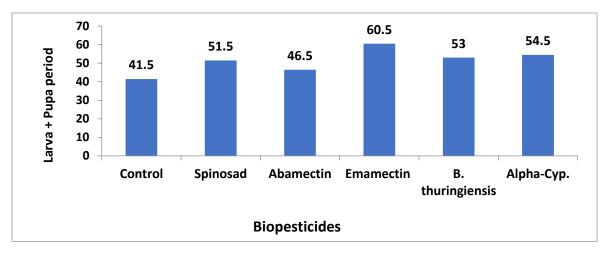


Figure (2): Effect of the tested pesticides on the total duration of larvae and pupa stages in Agrotis ipsilon

2.2. Effect of biopesticides on some detoxifying enzyme activity:

Some detoxifying enzymes and total proteins were estimated in the hemolymph of the treated 4th instar of *A. ipsilon* larvae. The obtained results in Table (4) display that significant activations of AchE and total protein were found in treated larvae by all tested pesticides compared to the larvae in the control group. On the other hand, all tested

pesticides led to inhibition in the GS-T except Alpha-Cypermethrin, which caused activation. Additionally, all tested pesticides caused activation in the GPT, except Abamectin, which led to inhibition. While the inhibition effect was observed in the GOT by all tested pesticides, except with Alpha-Cypermethrin, it had no effect on GOT. Also, ACP was inhibited in treated larvae by all tested pesticides, as shown in Table (4).

Table (4): Activity of some detoxifying enzymes and total protein in treated 4th instar larvae of Agrotis ipsilon

after four days of treatment by tested pesticides.

Treatments		Total				
	AchE (U/L/min.)	GS-T (U/L)	GPT (U/L)	GOT (U/L)	AcP (U/L)	Protein (gm/dl)
Control	23 ^f	1397 ^b	55 ^d	230 ^a	72ª	0.58e
Spinosad	78°	930°	106 ^b	169e	27e	2.33ª
Abamectin	62°	1220°	28e	221 ^b	56 ^b	0.97 ^d
Emamectin benzoate	$70^{ m d}$	1161 ^d	56 ^d	190°	42 ^d	1.55°
B. thuringiensis	86 ^b	902 ^f	70°	175 ^d	48°	1.55°
Alpha-Cypermethrin	132ª	1698ª	112ª	230ª	42 ^d	1.89 ^b
LSD (0.05)	2.44	9.86	5.05	3.97	3.19	0.021
F. value	1924***	8602***	361***	488***	211***	7762***
P. value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Duncan test at significance level 0.05. The same letters in the column mean no significant.

A. ipsilon, commonly known as the black cutworm, poses a significant threat as an early-season soil pest affecting cotton,

vegetables, and various field crops. Its ability to cut the stems of plants results in the need for replanting, leading to increased agricultural costs. Relatively little is known about the effectiveness of applying biopesticides against the black cutworm in Egypt. This lack of usage regarding biopesticides highlights the need for further research to explore their potential as an alternative management strategy. pest Understanding their effectiveness could lead to more sustainable agricultural practices and reduced reliance on chemical insecticides (Liu et al., 2023). So, this research was conducted to evaluate the effectiveness of four biopesticides (Spinosad, Abamectin, Emamectin benzoate, and B. thuringiensis) on the survival and growth rate of the black cutworm, A. ipsilon, under laboratory and field conditions.

The findings indicated significant differences in the impact of each biopesticide on the larvae, with Emamectin benzoate showing the highest efficacy in reducing survival rates under laboratory conditions and in pot experiments. Additionally, the growth rates of the black cutworm were notably affected; also, significant changes were found in the activity of estimated detoxifying enzymes and total protein in treated larvae compared to the control group. This suggests that these biopesticides could be viable alternatives for pest management in agricultural practices. It is also noted that tested biopesticides have a strong toxic effect compared to the standard pesticide (Alpha-Cypermethrin) recommended for cutworms. Also, the tested biopesticides have toxic effects against many lepidopterans' insect studies reported pests. Several Emamectin benzoate was the more effective biopesticide against many species of lepidopteran, like Spodoptera littoralis, Spodoptera exigua, Spodoptera frugiperda, Heliothis virescens, Plutella xvlostella, Tuta absoluta, and Mamestra brassicae (Gacemi and Guenaoui, 2012; Bengochea et al., 2014; El-Sheikh, 2015; Moustafa et al., 2016, and Moustafa et al., 2018).

Abd El-Samei et al. (2019) evaluated the effectiveness of two biopesticides (Spinosad and B. thuringiensis) against the third and fifth-instar larvae of S. littoralis. They found that the cumulative percentage mortality gradually increased by increasing concentration; also, B. thuringiensis was less potent than Spinosad. More than 30 nations have registered Spinosad as a promising bioinsecticide for the control of Lepidoptera, Coleoptera, Diptera, and Thysanoptera (Williams et al., 2004). In addition, Abamectin and Spinosad were evaluated against S. frugiperda and S. cretica in the laboratory and field experiments by Attia et al. (2023). They found that Spinosad was less effective for both insects than Abamectin. Also, they found that Abamectin had insecticidal activity against S. frugiperda and S. cretica in the laboratory and field conditions, more than other tested treatments. Also, Abdullah and Sukar (2025) mentioned that Spinosad and Abamectin had a high toxic effect against S. littoralis and, S. frugiperda. The LC₅₀ values of Spinosad and Abamectin were 6.23 and 27.75 ppm, respectively, against S. frugiperda and they were 20 and 30 ppm, respectively, against S. littoralis.

Using biopesticides as poison bait to control cutworms will help maintain soil fertility by preserving the microorganisms present in the soil, unlike traditional chemical pesticides that pollute the soil and eliminate the microorganisms present in the soil. This approach not only promotes a healthier ecosystem but also supports sustainable agricultural practices. By integrating biopesticides management into pest strategies, farmers can enhance crop yields while protecting the vital soil health necessary for future generations.

The compelling evidence surrounding Emamectin benzoate underscores its potential as a superior pesticide, particularly in the battle against the black cutworm, *A. ipsilon*, in this study. Not only does it

outperform untreated controls and traditional pesticides, but it also significantly impairs growth rates across various life stages of this pest. The alterations observed in detoxifying enzyme activity and total protein levels among treated larvae further illustrate its effectiveness, suggesting that Emamectin benzoate disrupts critical physiological organism. processes within the agricultural practices continue to seek sustainable and efficient pest control methods, embracing Emamectin benzoate could provide a promising alternative that enhances crop protection while mitigating reliance on conventional pesticides.

This study suggested using Emamectin benzoate and Spinosad to manage black cutworm (*A. ipsilon*) because they were more effective at killing the pests in lab and semifield tests than the recommended pesticide, Alpha-cypermethrin.

References

Abbott, W. S. (1925): A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265-267.

https://doi.org/10.1093/jee/18.2.265a.

- Abd El-Samei, E. M.; Hamama, H. M.; El-Enien, M. G. A. A. and Awad, H. H. (2019): Interaction of spinosad and Bacillus thuringiensis certain on toxicological, biochemical and molecular aspects in the Egyptian cotton leaf worm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). African Entomology, 27(2): 508-522. https://doi.org/10.4001/0 03.027.0508
- Abdullah, R. R. H. and Sukar, N. A. (2025): Comparison between Spodoptera frugiperda and Spodoptera littoralis: Insecticide Resistance, Detoxifying Enzymes and Protein Patterns. Journal of Plant Protection and Pathology, Mansoura Univ., 16 (2):59–66. https://doi.org/10.21608/jppp.2025.349384.1296

- Alfazairy, A. A.; El-Ahwany, A. M. D.; Zaghloul, H. A. H.; El-Helow, E. R.; Mohamed, E. A. and El-Helow, E. R. (2013): Microbial control of the cotton leafworm *Spodoptera littoralis* (Boisd.) by Egyptian *Bacillus thuringiensis* isolates. Folia Microbiol, 58:155–162. https://doi.org/10.1007/s12223-012-0193-7
- Alsaedi, G.; Ashouri, A. and Talaei-Hassanloui, R. (2017): Evaluation of Bacillus thuringiensis to Control Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory conditions. Agricultural Sciences, 8: 591-599.

https://doi.org/10.4236/as.2017.87045

- Amin, A. H.; Bayoumi, A. E.; Dimetry, A. Z. and Youssef D. A. (2019): Efficiency of Nano-formulations of neem and peppermint oils on the bionomics and enzymatic activities of *Agrotis ipsilon* larvae (Lepidoptera: Noctuidae). J. Nat. Resou., 4: 102. https://doi.org/10. 11648/j.ijnrem.20190405.11
- Attia, M. M. R.; Adnan, A. E. D. and Mansy, A. S. (2023): Effectiveness of Some Bio-insecticides on *Spodoptera frugiperda* (J. E. Smith) and *Sesamia cretica* Lederer (Lepidoptera: Noctuidae). Journal of the Advances in Agricultural Researches (JAAR), 28 (2):273-283. https://doi.org/10.21608/JALEXU.2023.1 96001.1122
- Bengochea, P.; Sánchez-Ramos, I.; Saelices, R.; Amor, F.; del Estal, P.; Viñuela, E.; Adán, Á.; López, A.; Budia, F. and Medina, P. (2014): Is emamectin benzoate effective against the different stages of Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae)?. Irish Journal of Agricultural and Food Research, 53: 37–49.
- Binning, R. R.; Coats, J.; Kong, X. and Hellmich, R. L. (2015): Susceptibility to Bt proteins is not required for Agrotis

- *ipsilon* aversion to *Bt* maize. Pest Manag Sci., 71: 601–606. https://doi.org/10.1002/ps.3901
- Bratu, E.; Petcuci, A. M. and Sovarel, G. (2016): Efficacy of the Product Spinosad an Insecticide used in the Control of Tomato Leaf miner (*Tuta absoluta* Meyrick, 1917). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Horticulture, 72(1):209-210.
 - https://doi.org/10.15835/buasvmcn-hort: 10876.
- El-Sheikh, E. A. (2015): Comparative sublethal effects toxicity and emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. Noctuidae). (Lepidoptera: Crop Protection. 228–234. 67: https://doi.org/10.1016/j.cropro.2014.10. 02
- **Finney, D. J. (1971):** Probit analysis. 3rd edition. Cambridge university press, pp. 318.
- Gacemi, A. and Guenaoui, Y. (2012):
 Efficacy of Emamectin Benzoate on *Tuta absoluta* Meyrick (Lepidoptera: Gelechiidae) Infesting a Protected Tomato Crop in Algeria. Academic Journal of Entomology, 5 (1): 37-40. https://doi.org/10.5829/idosi.aje.2012.5.1. 6315
- Gornal, A. G.; Bardawill, C. J. and David, M. M. (1949): Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177 (2): 751-766.
- Hanash, A. A. (2023): Estimation insecticidal action of Abamectin and Neem oil against Tuta Absoluta insect (Lepidoptera: Glechiidaee. Wasit Journal for Pure Science, 2(4):131-135. https://doi.org/10.31185/wjps.225.
- **Ismail, S. M. (2021):** Field persistence of certain new insecticides and their efficacy against black cutworm, *Agrotis ipsilon* (Hufnagel), Bulletin of the National

- Research Centre, 45(17):1-7, https://doi.org/10.1186/s42269-020-00481-y.
- Ismail, S. M. (2024): Response of Life Parameters and Nutritional Physiology of *Spodoptera frugiperda* (J.E. Smith) to Sublethal Concentrations of Chlorantraniliprole. Int. J. Adv. Biol.Biomed. Res., 12(4): 342-356. https://doi.org/10.48309/IJABBR.2024.2 025885.1505
- Karshanal, J. and Kalia, V. K. (2023): Efficacy of native *Bacillus* isolates against different larval instars of fall armyworm, *Spodoptera frugiperda* alone and in combination. Egypt J Biol Pest Control, 33:102. https://doi.org/10.1186/s41938-023-00743-7
- Koffi, D.; Kyerematen, R.; Osae, M.; Amouzou, K. and Eziah, V. Y. (2022): Assessment of *Bacillus thuringiensis* and emamectin benzoate on the fall armyworm *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae) severity on maize under farmers' fields in Ghana. International Journal of Tropical Insect Science, 42:1619–1626. https://doi.org/10.1007/s42690-021-00683-5.
- Liu, P.; Zhang, J.; Shen, H.; Yang, Q.; Pu, X.; Sun, D. and Lin, B. (2023): Efficacy of transplant insecticides against black cutworm *Agrotis ipsilon* (Lepidoptera: Noctuidae) in tobacco. Crop Protection, 171:106283. https://doi.org/10.1016/j.cropro.2023.106283.
- Meendez, W. A.; Valle, J.; Ibarra, J. E.; Cisneros, J.; Penagos, D. I. and Williams, T. (2002): Spinosad and nucleopolyhedrovirus mixtures for control of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in maize. Biological Control, 25(2):195-206. https://doi.org/10. 1016/S1049-9644(02)00058-0

- Morsy, M. M. and Elwan, A. A. (2021): Use of abamectin as an eco-Friendly pesticide against diamondback moth on cabbage crop. Journal of the Advances in Agricultural Researches, 26 (4): 466-478. https://doi.org/10.21608/jalexu.2022.111 943.1029.
- Moustafa, M. A. M.; Awad, M.; Abdel-Mobdy, Y. E. and Eweis, E. A. (2018):
 Latent Effects of Emamectin Benzoate
 Formulations on *Spodoptera littoralis*Boisd. (Lepidoptera: Noctuidae). Alex. J.
 Agric. Sci., 63(1): 53-61.
- Moustafa, M. A. M.; Kákai, Á.; Awad, M. and Fónagy, A. (2016): Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage moth, *Mamestra brassicae* L. (Lepidoptera: Noctuidae). Crop Protection Journal, 90:197-204. https://doi.org/10.1016/j.cropro.2016.09. 004
- Osman, M. A. M.; Mosleh, Y. Y. and Mahmoud, M. F. (2014): Effects of Spinosad as a Bioinsecticide on the Corn Stem Borer, *Sesamia cretica* Led. (Lepidoptera: Noctuidae). Journal of Applied Plant Protection; Suez Canal University, 2: 39-46.
- Pan, L.; Renm, L.; Chen, F.; Feng, Y. and Luo, Y. (2016): Antifeedant activity of *Ginkgo biloba* secondary metabolites against *Hyphantria cunea* larvae: Mechanisms and applications. PloS ONE 11 (5): e0155682. https://doi.org/10.1371/journal.pone.0155682.
- Powell, M. E. A. and Smith, M. J. H. (1954): The determination of serum acid and alkaline phosphatase activity with 4-amino antipyrine (A.A.P). Journal

- Clinical pathology, 7(3): 245-248. https://doi.org/10.1136/jcp.7.3.245.
- Reitman, S. and Frankel, S. (1957): A Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pPyruvic transaminases. American Journal of Clinical Pathology, 28(1): 56-63. https://doi.org/10.1093/ajcp/28.1.56
- SAS (1997): SAS/STAT User's Guide for Personal Computers, SAS Institute, Cary, NC, 18.
- Simpson, D. R.; Bulland, D. L. and Linquist, D. A. (1964): A semi microtechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am., 57:367–371.
- Sukirno, S.; Khawaja, M. T.; Rasool, G.; El Salamouny, S.; Sutanto, K. D. and Aldawood, A. S. (2017): The effectiveness of spinosad and neem extract against *Spodoptera littoralis* (Boisd.) and *Spodoptera exigua* (Hubner): exploring possibilities to enhance the biopesticide persistence with natural UV protectants under field-sunlight conditions of Saudi Arabia. Pak. J. Agri. Sci., 54(4): 743-751.
 - https://doi.org/10.21162/PAKJAS/17.530
- **Sun, Y. P. (1950):** Toxicity index on improved method of comparing the relative toxicity of insecticides. *Journal of Economic Entomology*, 43(1): 45-53. https://doi.org/10.1093/jee/43.1.45.
- Williams, T.; Cisneros, J.; Penagos, D. I.; Valle, J. and Tamez-Guerra, P. (2004): Ultralow rates of spinosad in phagostimulant granules provide control of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in maize. Journal of Economic Entomology, 97(2): 422–428.