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Meloidogyne, advantages,

rank among the top ten plant-parasitic nematodes and are
responsible for more than 50% of yield losses caused by plant-
parasitic nematodes worldwide. Morphological characteristics
of RKNs have been used for a long time for identification.
Nowadays, many molecular marker PCR-based methods have

evolved for identification. Biological control was the strategy
that got more attention and has been used recently for
managing nematodes. In this regard, Trichoderma, Fusarium,

and Drechslerella

have received more

attention for the management of RKNs. These fungi developed
their ability to reduce nematode populations in soil. They
attack nematodes directly via parasitism or by producing
metabolites and enzymes that degrade nematode cell walls or
produce trapping organs that catch the nematodes. Thus, it is
crucial for accurate nematode identification by different
methods for employing the best management strategy.
Prospect studies should focus on the isolation, identification,
and screening of nematophagous fungi applications for

disadvantages, and
limitations.
Cladosporium,
controlling RKNs.
Introduction

Plant-parasitic nematodes (PPNs)
are a group of nematodes that feed on
living plant cells. They belong to the
kingdom Animalia and are placed
among the most serious plant pathogens
for agricultural crops worldwide. More
than 4100 species of PPNs have been
described around the world (Jones et
al., 2013). According to Hunt et al.
(2018), PPNs are classified according to
their parasitism as ectoparasites
(Nematode doesn’t enter plant tissues
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and remains in  soil), semi-
endoparasites (The anterior part of the
nematode penetrates the plant root
while the posterior part remains in soil),
and endoparasites (The  whole
nematode body penetrates the root
tissues). There are two kinds of
endoparasites: migratory endoparasites
(Still moving inside plant tissues and
have no fixed feeding site) and
sedentary endoparasites (They have a
fixed site of feeding and induce nurse
cells or syncytia, mostly become obese,



El-Qurashi et al., 2025

and thereby lose their mobility). The
annual losses caused by PPNs are 8.8-
14.6% worldwide (Nicol et al., 2011).
This estimation may be less than the
real estimation due to the default
estimation in different countries. In
2023, Quintanilla and Fazlabadi
reported that PPNs cause more than
60% yield losses. By direct and indirect
damage, PPNs decrease yield and crop
quality as well as increase production
costs and income losses. Damage
caused by PPNs is characterized by
stunting, premature wilting, leaf
yellowing, root malformation, and
nutrient deficiencies that occur in
patches throughout the field as a result
of irregular distribution of nematodes in
the soil. Root-Knot nematodes
(Meloidogyne spp.), cyst nematodes
(Heterodera and Globodera), and root-
lesion nematodes (Pratylenchus spp.)
are among the most destructive plant-
parasitic nematodes worldwide
(Quintanilla and Fazlabadi, 2023).
Root-Knot nematodes (Meloidogyne
spp.) are polyphagous, sedentary
endoparasites that pose a serious threat
to crop production (Peiris et al., 2020).
Relying on economic and scientific
importance, RKNs ranked first among
the top ten PPNs worldwide (Jones et
al., 2013). This genus involves more
than 100 species described; the most
important of them worldwide are M.
incognita, M. javanica, M. arenaria,
and M. hapla (Elling, 2013; Coyne et
al., 2018, and Sikandar et al., 2020).
According to Elling (2013), the host
range of RKNs exceeds 3000 plant
species. RKNs caused losses in
agricultural production crops of about
$78 billion annually around the world
(Lima et al., 2017). According to
Wendimu (2021), the taxonomic
classification of RKNs is Domain:
Eukaryota, Kingdom: Metazoa,
Phylum: Nematoda, Class:
Secernentea,  Order:  Tylenchida,
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Family: Heteroderidae, Genus:
Meloidogyne.
Many strategies have been used for

controlling RKNs, including chemical

control, cultural control, physical
methods, and biological control.
Chemical control is a widespread

practice; they have proved to be a useful
and reliable means of controlling a wide
range of PPNs. Recently, the
exaggerated use of nematicides has
caused soil and environmental pollution
and hazards (El-Qurashi et al, 2025).
Additionally, farmers are not careful
when using nematicides and sometimes
use more than the recommended dose.
Chemical control also became more
expensive due to the rise of synthesis
costs of new compounds. Cultural
methods like adding plant amendments
or changing planting time can be
effective in controlling RKNs but are
not economical. Physical methods can
also be used for controlling RKNs. Soil
fallowing during hot and dry weather,
immersing soil with water, and plowing
soil more times are also used for
reducing RKNs population but are not
economically effective as well.
Regarding botanical nematicides,
more than 100 plant species have been
evaluated for controlling PPNs. Plant
extracts and crude extracts have
exhibited inhibitory effects against
RKNs. Most fungal, bacterial, yeast,
and actinomycete isolates have been
used for controlling RKNs. Fungal
antagonists of nematodes include both
nematophagous and non-
nematophagous  fungi that have
detrimental effects on nematodes (Chen
and Dickson, 2004). The benefits of
biocontrol agents are that they can
compete and persist in the environment,
colonize the niches rapidly, and
proliferate on newly formed roots.
Nematophagous fungi were
categorized as predacious fungi,
endoparasites of vermiform worms,
parasites of sedentary females and eggs,



Egypt. J. Plant Prot. Res. Inst. (2025), 8 (3): 329-359

fungi  that  produce  antibiotic
compounds, and vesicular-arbuscular
mycorrhizal fungi (Chen and Dickson,
2004). Some individual fungi can
belong to different categories, so there
is no clear-cut distinction between these
categories. Predacious fungi capture
nematodes by forming specific devices,
then kill and consume their prey. These
devices are adhesive hyphae, branches,
nets and knobs, non-constructing and
constructing rings and stephanocysts
(Barron, 1977). Regarding RKNs
management, Fusarium, Trichoderma,
Arthrobotrys, Dactylella, Aspergillus,
Purpureocillium, and Verticillium have
been successfully used to control RKNs
(Barron, 1977).

Root-Knot nematodes (Meloidogyne
spp.):

The first recorded instance of Root-
Knot nematode disease transpired in the
mid-19th century, when galls were seen
on the roots of cucumber (Cucumis
sativus) in a greenhouse (Berkeley,
1855). Anguillula marioni Cornu, 1879,
was the first species of Root-Knot
nematode to be found; it formed galls
on the roots of sainfoin (Onobrychis
sativus) in France (Hunt and Handoo,
2009). Chitwood separated the genera
Meloidogyne and Heterodera in 1949
based on morphological differences,
whereas Goldi established the name
Meloidogyne in 1887 (Chitwood, 1949
and Moens et al., 2009). The
descriptions of Meloidogyne arenaria

(Neal, 1889)  Chitwood, 1949,
Meloidogyne incognita (Kofoid and
White, 1919) Chitwood, 1949,

Meloidogyne javanica (Treub 1885)
Chitwood, 1949, and Meloidogyne
hapla Chitwood, 1949 were among the
later updates (Moens et al., 2009).
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Root-Knot nematodes (Meloidogyne
spp.) are considered one of the most
crucial plant pathogens that limit plant
production for most cultivated plants
worldwide. Their world distribution,
massive  host range, and their
interaction with other plant pathogens
causing disease complexes rank them
among the major pathogens affecting
the world food supply (Sasser, 1980). In
2013, Jones et al. ranked RKNs as the
first plant pathogens out of the top ten
plant nematodes that caused economic
losses for crops. In Saudi Arabia, M.
Jjavanica is the most dominant species
and causes very severe damage to
vegetables, followed by M. incognita,
which occurs mostly on shrubs and
trees (Al-Hazmi et al, 1995).
Moreover, ornamentals and
horticultural trees were also found to be
attacked with  Meloidogyne  spp.
(Mokbel, 2014). Meloidogyne spp.
were also recorded to infect coffee trees
in the Jazan region (Al-Hazmi et al.,
2009, and Mohamed et al., 2023) and
some greenhouse vegetable crops in the
Riyadh region as well (Almohithef et
al., 2018).

Root-Knot nematode life cycle:

The life cycle of RKNs consists of
four juvenile stages (J1 in eggs, J2, J3,
and J4) and adults. Inside roots (Figure
1), females lay eggs containing J1 that
develop into J2 and hatch from eggs.
J2s infect plant roots and develop into
J3 and J4 (sedentary phases). Then, J4
molts to adult females, which remain in
roots and produce egg masses (Sikandar
et al., 2020). In RKNs, especially M.
incognita and M. javanica, mitotic
parthenogenesis was the common
reproductive method (Hussey and
Janssen, 2002).
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Figure (1): The life cycle of Root-Knot nematodes (ElI-Qurashi and Al-Yahya, 2025).

Crop losses caused by Root-Knot
nematodes:

In 1987, Sasser and Freckman
estimated the crop losses due to plant-
parasitic nematodes at 8.8-14.6%
worldwide. However, in 2020, there
was a high increase in crop losses
caused by plant-parasitic nematodes,
which were estimated to be 21.3% of
production (Kumar et al., 2020). The
majority of crop losses are caused by
RKNs, which affect virtually every crop
plant (Mukherjee et al, 2011).
Meloidogyne spp. caused losses for
peanuts, tobacco, soybean, and
vegetable crops by more than 50% of
total nematode losses worldwide
(McSorley et al., 1987, and El-Qurashi
et al, 2023). M. javanica and M
incognita caused 20 to 30% losses in
chickpea production in India (Ali and
Sharma, 2003). M. graminicola caused
losses of 16-32% of rice yield
(Mukherjee et al, 2011). While in
2020, Kumar et al. estimated losses
caused by M. graminicola by 16% in
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rice. Additionally, Meloidogyne spp.
Caused 25, 18, 23, 23, 4.5- 16, and
19.75% losses in fruit, vegetables,
horticultural, pulse, oilseed, and fiber
crops, respectively.
Root-Knot nematode identification:
Traditionally, RKNs were identified
using morphometric methods such as
the morphology of the perineal pattern,
male head morphology, size and shape
of the stylet, and the distance from the
stylet base to the dorsal esophageal
gland orifice (DGO) (Cunha et al.,
2018). For males, supplementary
characteristics encompass body size,
labial cap morphology and height,
number of annulations, diameter of the
labial region in relation to the first body
annule (Figure 2), stylet length,
configuration of the stylet cone, shaft,
and basal knobs, length of the stylet cone,
distance between the stylet knobs and the
dorsal gland opening, metacarpus lumen
lining, distance from the anterior end to
the excretory pore, phasmid position and
length, and spicule morphology.
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Figure (2): Drawings of the anterior end of a Meloidogyne male (Eisenback and Hunt, 2009).

Measurements of juvenile body and
stylet length, morphology of the labial
region, configuration of stylet knobs,
location of the hemizonid, distance
from the anterior end to the stylet
knobs, distance from the stylet base to
the dorsal gland orifice (DGO),
enumeration of lines in the lateral field,
along with the shape, length of the tail,
and length of the hyaline terminus, are
also considered.

For decades, the female perineal
pattern (Figure 3) has been the only
main technique used for RKN species

identification (Seesao et al., 2017). In
1981, Eisenback et al. reported that host
plants were used for differentiating
between the four major species of
Meloidogyne  (Table 1).  These
morphological  characteristics  are
perhaps not satisfying due to the RKN
species being close in morphological
characteristics like stylet shape and
size. Perineal patterns and host
differential plants are used mainly for
differentiating between the four major
RKN species only.
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Figure (3): Different characteristics of RKN female perineal pattern (Karssen and Moens, 2006).
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Table (1): Response of the differential hosts to the four major species of Root-Knot nematodes and their races.

RKN species Differential hosts
Cotton Tobacco Pepper Watermelon Peanut Tomato
(Deltapine | (NC95) | (California | (Charleston | (Florunner) | (Rutgers)
16) Wonder) Gray)
Meloidogyne incognita race 1 - + + +
Meloidogyne incognita race 2 + + + +
Meloidogyne incognita race 3 + - + + +
Meloidogyne incognita race 4 + + + + +
Meloidogyne arenaria race 1 + + + + +
Meloidogyne arenaria race 2 + - + +
Meloidogyne javanica + + - + - +
Meloidogyne hapla - + + + +

So, other methods should be used,
like biochemical and molecular DNA-
based techniques. Isozyme phenotypes
are used successfully for diagnosing the
RKNs worldwide. This technique was
used for the first time by Esbenshade
and Triantaphyllou (1985) when they
reported different esterase patterns from
16 RKN species. The stability of
isozyme phenotypes within different
individuals of RKNs make it a crucial
tool to use worldwide (Blok and
Powers, 2009).

A drawback of this method is that it
can only be used with mature females,
as the specific gene required for its
success is only expressed in mature
females. DNA-based techniques for the
identification of Meloidogyne species
were first documented in the 1980s,
with Curran et al. (1985) using
restriction fragment length
polymorphisms (RFLPs). In the last ten
years, molecular diagnostics for
nematodes have advanced markedly
due to the invention and use of
polymerase chain reaction (PCR)
(Nega, 2014). Root-Knot nematode
species have been identified using a
variety of DNA-based methods,
including satellite DNA probes and
PCR, ribosomal DNA (rDNA) PCR,
mitochondrial DNA (mtDNA) PCR,
sequence-characterized amplified
regions (SCARs), random amplified
polymorphic DNA (RAPDs),
microarrays, amplified fragment length
polymorphisms (AFLP), PCR targeting
rDNA, mt DNA, internal transcribed
spacer (ITS), and ribosomal intergenic

(-) indicates not host (Resistant); (+) indicates good host (Susceptible), (Eisenback ef al., 1981).
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spacer (IGS) sequences, and real-time
PCR (Blok and Powers, 2009).
Molecular  approaches  for  the
identification of Meloidogyne species
are always evolving, with the
anticipation of more advanced
methodologies emerging with
advancements in molecular technology.
Biochemical techniques:

Isozymes and antibodies are two
biochemical methods that have been
applied to identify Meloidogyne species
(Blok and Powers, 2009). The use of
isozyme phenotypes for identification
began  with Esbenshade and
Triantaphyllou (1985), who
demonstrated that different esterase
patterns could differentiate 16 species
of Root-Knot nematodes. Since then,
researchers have adopted isozyme
phenotypes, particularly
carboxylesterase/esterase, as a routine
method for identifying Meloidogyne
species (Blok and Powers, 2009). While
1sozyme phenotypes remain consistent
across different individuals, making it a
valuable identification tool, a drawback
of this method is that it can only be
applied to mature females. The specific
gene required for this process is only
expressed in mature females (Blok and
Powers, 2009).

An antibody-based capture
technique was created to enhance
nematode extraction from soil since
plant-parasitic nematodes are tiny and
have an uneven distribution in soil,
making it difficult to identify them in
plant samples. This technique utilizes
an antibody that adheres to the surface
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of the target nematode after incubation
with extracted worms (Chen et al,
2001; Blok and Powers, 2009, and
Nega, 2014). Subsequently, magnetic
beads coated with a secondary antibody
are added, and a magnet seizes the
target species, eliminating non-targets
(Chen et al, 2003). The
immunomagnetic capture approach
enables the recovery of Meloidogyne
species from soil samples with a
success rate of up to 80% (Chen et al.,
2001 and 2003).

Ribosomal and mitochondrial DNA
PCR:

While SCAR-PCR has demonstrated
significant efficacy in differentiating
various Meloidogyne species, several
universal primers have been evaluated
in the last few years for the
identification of Meloidogyne spp.
(Tigano et al., 2010; Onkendi and
Moleleki, 2013a; Onkendi et al., 2014;
Bekker ef al., 2016; Janssen et al., 2016
and El-Qurashi et al, 2017).
Nonetheless, the majority of these
primers have had difficulties in
consistently distinguishing between
Meloidogyne species. Research
conducted by Onkendi and Moleleki
(2013b) using IGS-rDNA and mtDNA
sequences demonstrated that M.
incognita, M. javanica, and M. arenaria
grouped as a singular clade.
Simultaneously, examination of D2-D3
28S rDNA sequences categorized M.
incognita and M. enterolobii as a single
clade, while M. arenaria and M.
javanica constituted distinct clades.
Furthermore, partial 18S and 28S rDNA
sequences from the M. incognita
population in China exhibited 99%
similarity with other tropical species
such as M. incognita, M. arenaria, M.
javanica, and M. floridensis (Zeng et
al., 2014), underscoring the
inadequacies of these primers in
precisely distinguishing these species.
Specific DNA sections, including 18S,
ITS, and 28S, may distinguish specific
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tropical species such as M. incognita,
M. javanica, and M. arenaria, as shown
in research on M. hispanica (Landa et
al.,2008) and M. enterolobii (Bekker et
al., 2016). Janssen et al. (2016)
determined that the COI, COII, COIII,
and 16S segments were insufficient for
differentiating M. incognita, M.
arenaria and M. javanica. The low
sequence diversity in the ITSI, ITS2,
and 5.8S regions among the mitotically
parthenogenetic species M. arenaria,
M. incognita, and M. javanica renders
these areas inadequate for distinction
(De Ley et al., 1999 and Blok, 2005).
The COII/16S (C2F3/1108) marker has
been effectively utilized for the
identification of Meloidogyne spp.
(Powers and Harris, 1993; Blok et al.,
2002 and Powers et al., 2005);
however, it did not yield amplification
products for Turkish Meloidogyne spp.
(Devran and S6gut, 2009), rendering it
unreliable  for  precise  species
identification.

SCAR-PCR:

Given the limitations of various
recently developed universal primers in
reliably distinguishing Meloidogyne
species, other established molecular
methods such as RAPD and SCAR-
PCR are essential for confirming
species identification (El-Qurashi et al.,
2017). SCAR-PCR, developed
specifically for diagnostic use, focuses
on a specific DNA segment and is
particularly effective for identifying
species ~ with  minimal  genetic
differences based on DNA fragment
length (Blok and Powers, 2009). For
example, three RAPD markers have
effectively differentiated the Root-Knot
nematode species; M. arenaria, M.
incognita, and M. javanica. Three
species-specific primers developed for

SCAR-PCR have successfully
identified many Meloidogyne species,
precisely distinguishing the

thermophilic species: M. arenaria, M.
incognita, M. javanica, and M.
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enterolobii. This technique also
efficiently distinguishes the cryophilic
species: M. hapla, M. fallax, and M.
chitwoodi (Zijlstra, 2000).
Furthermore, three pairs of species-
specific primers have been used in
multiplex PCR  for the quick
identification of M. incognita, M.
enterolobii, and M. javanica from DNA
recovered from individual galls (Hu et
al.,2011).
Genotyping using Sequencing:
Genotyping by Sequencing (GBS) is
one of the high-throughput molecular
approaches that has recently gained
popularity and proved useful for genetic
research  (Elshire et al., 2011).
According to Jarquin et al. (2014), GBS
is a simple technique that employs next-

generation sequencing of genomic
fragments, such as those from
nematodes, produced by certain
restriction enzymes, followed by
analysis using a  bioinformatics

pipeline. This approach demonstrates
significant accuracy in elucidating
intricate genetic information across
several species. GBS 1is especially
advantageous for investigating
nematode genes by identifying the
Single Nucleotide Polymorphisms
(SNPs) across several loci and has been
successfully used to assess genetic
diversity in cyst nematodes (Mimee et
al., 2015). GBS, on the other hand, is
not an identifying tool. In contrast,
Rashidifard et al. (2018) used GBS for
the first time to investigate genetic
diversity and perform phylogenetic

analysis  of  Meloidogyne  spp.
populations.
Biological control of Root-Knot
nematodes:

Plethora strategies have been used
for managing RKN worldwide.
Chemical nematicides are considered
the most effective strategy. However, it
is causing harmful effects on the
environment, microflora, animal, and
human, and polluting underground
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water. So, most nematicides have been
banned from global markets. Recently,
a lot of attention has been given to
biological control. Biological control is
defined as using organisms or their
metabolites to decrease the population
density of another organism (Bale et al.,
2008). Different strains of bacteria,
fungi, actinomycetes, yeasts,
nematodes, and mites have been
utilized for managing RKN. Fungal
antagonists ~of  nematodes  are
categorized based on their mechanisms
of action as predacious fungi,
endoparasites of vermiform worms,
parasites of sedentary stages, antibiotic-
producing fungi, and vesicular-
arbuscular mycorrhizal fungi (Chen and
Dickson, 2004). Predacious fungi attack
nematodes by producing special
devices, including adhesive hyphae,
branches, nets, and knobs, and non-
constructing and constructing rings
(Figure 4). Fungal endoparasites of
vermiform nematodes are obligate
(Hirsutella, Verticillium, and
Haptoglossa) or facultative (Catenaria
and Verticillium) parasites. Fungi that
attack nematode females, egg masses,
cysts, and eggs are known as sedentary
parasitic fungi. The final group is fungi
that produces toxic metabolites or
enzymes that may inhibit or stimulate
egg hatches. Trichoderma, Fusarium
Paecilomyces, Penicillium, Aspergillus,
Arthrobotrys, Drechslerella (Chen and
Dickson, 2004 and Al-Hazmi et al,
2019). The potency of certain fungi
against RKNs, such as T harzianum, T.
hamatum, and T. viride, has been
proved by Javeed et al. (2016), who
provided the ability of these fungi to
control M. javanica in vitro and in vivo.
P. lilacinus, T. harzianum were
suppressed M. javanica egg hatch and
increased J2s mortality percent alone
and combined with humic acid (Al-
Hazmi and Javeed, 2015; Javeed and
Al-Hazmi, 2015 and Al-Hazmi et al.,
2019).
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Figure (4): Structures created by predatory fungi. (a) Adhesive knobs on stalks. (b) Sessile sticky
knobs. (¢) Adhesive knob of Nematoctonus. (d) Adhesive branches. (e) Non-constricting rings. (f)
Two-dimensional sticky mesh. (g) Three-dimensional sticky net. (h) Constricting rings (Barron,

1977).

Microbial pesticides mechanisms:
Comprehending the mechanisms of
biocontrol in microbial pesticides is
essential for the effective reduction of
pathogens in their hosts. Certain strains
utilize a singular biocontrol method,
whereas others employ a combination
of strategies. Antibiosis, a phenomenon
in which microbes suppress plant-
pathogenic bacteria and fungi, is
frequently observed in fruit trees.
Bacillus subtilis synthesizes
cyclolipopeptides, such as fengycins,
which serve to protect apple fruits from
gray mold (Botrytis cinerea) (Ongena et

al., 2005). Additional approaches
involve phenolic antifungal
compounds, such as pyrrolnitrin

derived from Pseudomonas cepacia
(Janisiewicz and Roitman, 1988),
bacteriocins  like  herbicolin  and
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pantocins sourced from Pantoea
species (Ishimaru et al., 1988; Wright et
al., 2001, and Smits et al., 2010), and
lytic enzymes from Trichoderma
harzianum aimed at controlling
Penicillium expansum in apples (Batta,
2004). Competitive exclusion occurs
when biocontrol agents outcompete
pathogens for essential nutrients and
colonization sites. This mechanism is
prevalent in the postharvest decay of
pome fruits and in the management of
fire blight (Sharma et al., 2009 and
Cabrefiga et al., 2007).

Various hyperparasites, such as
yeasts and fungi, including Pichia and
Trichoderma, have the capability to
directly degrade fungal cells, synthesize
antimicrobial compounds, establish
hyperparasitism, disrupt pathogen
signaling, or trigger resistance in plant
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hosts (Harman, 2006). Fungal viruses
and bacteriophages may be employed to
target specific pathogens (Jones et al.,
2007; Ghabrial and Suzuki, 2009).
Spadaro and Gullino (2004) indicate
that certain microbes, including
bacterial and fungal strains, can activate
plant defense mechanisms through the
release of elicitors, such as cell wall
components, or signaling molecules,
such as salicylic acid. Finally, specific
biocontrol agents impede pathogens by
breaking down chemical signals
essential for quorum sensing, which
pathogens use to initiate infection (e.g.,
acyl homoserine lactones) (Molina et
al., 2003).
Trichoderma
nematodes:
Trichoderma strains are extensively
used as biocontrol agents against Root-
Knot nematodes all over the world. By
entering egg masses and juveniles,
Trichoderma species have shown
efficacy in regulating RKNs both in
vitro and in vivo. This decreases egg
hatching and raises the mortality rate of
second-stage juveniles (J2s) (Sahebani
and Hadavi, 2008). According to Khan
et al. (2020), the species and growth
medium composition have an impact on
Trichoderma's effectiveness.
Furthermore, Trichoderma generates
several compounds and enzymes that
degrade the cell walls of RKN stages
and paralyze J2s and eggs (Sidhu et al.,
2014). In addition to its ability to
suppress nematodes, Trichoderma also
generates phytohormones that stimulate
plant development and stimulate plant
systemic resistance against plant
diseases (Goswami et al., 2008). T.
harzianum promotes plant development
by the synthesis of secondary
metabolites, including harzianic acid,
harzianolide, auxin, abscisic acid, and
6-pentyl-2H-pyran-2-one (Goswami et
al., 2008, and Zin and Badaluddin,
2020). These compounds enhance
lateral root development, root length,

\'L) Root-Knot
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root surface area, root tips, seed
germination, and seedling growth
(Vinale et al., 2013, and Cai et al.,
2013).

The effects of Trichoderma on
enhancing plant defense mechanisms
against nematodes and inducing
systemic resistance are illustrated in the
next key points: Increased Enzyme
Activities: 7. harzianum markedly
enhances the activity of defense-related
enzymes such as phenylalanine
ammonia-lyase (PAL), peroxidase
(POX), and polyphenol oxidase (PPO).
This signifies an induced resistance
response in plants. Howell ez al. (2000),
Evans et al. (2003), and Coppola et al.
(2019) have shown that 7. harzianum
colonization may enhance the levels of
certain defensive enzymes, such as
chitinase, B-1,3-glucanase, and
lipoxygenase.

Parasitism and Enzyme Secretion:
Trichoderma can directly parasitize
nematode eggs and juveniles by
secreting enzymes such as chitinase and
protease, which aid in breaking down
the protective structures of the eggs.
Sharon et al. (2001) demonstrated
direct parasitism by 7. harzianum T-
203 on M. javanica, with extracellular
protease being involved, although the
rate of parasitism was low. The
involvement of chitinases in attacking
nematode eggs also been documented
in other fungi like Purpureocillium
lilacinum  (formerly  Paecilomyces
lilacinus) and Pochonia spp., which
were found in infected nematode eggs
(Khan et al., 2003; Tikhonov et al.,
2002, and Hao et al., 2025). This
supports the concept that these enzymes
facilitate the infection and degradation
of nematode eggs by breaking down the
chitinous structure of the eggshell.

Implications for Plant Health: The
use of Trichoderma can be seen as a
dual approach, providing direct
antagonistic action against nematodes
and boosting the plant's defensive
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responses, making it a valuable agent in
biological control strategies against
nematode pests. Ahmed et al. (2010)
documented the potential of five
Trichoderma species, namely T.
harzianum, T. hamatum, T. lignorum, T.
glaucum and T. koningii were applied
as seed dressing for enhancing plant
fresh weight of sunflower, okra, and
cowpea and mitigating M. incognita
Root-Knot nematode infection.

Increase in Defense Hormones: In
cucumber cotyledons, inoculation with
T. asperellum T34 led to increased
concentrations of salicylic acid (SA)
and jasmonic acid (JA) within a
timeframe of 3 to 48 hrs. (Segarra et al.,
2007). Both SA and JA are crucial
signaling molecules in plant defense
pathways. Salicylic acid is generally
associated with systemic acquired
resistance (SAR) against biotrophic
pathogens, while jasmonic acid is
linked to resistance against
necrotrophic pathogens and herbivores
(Kamle et al., 2020).

Enzymatic Activity in Trichoderma:
Trichoderma, like the other
nematophagous fungi, can produce
extracellular chitinase and protease
enzymes. These enzymes help the
fungus to penetrate the chitinous and
proteinaceous barriers of nematode
eggs. So, it's noted that there was an
increase in the proportion of infected
nematode eggs as chitinase activity
rose.

Chitinase Role: Chitinases are
inducible enzymes that break down
chitin, which is an essential component
of fungal cell walls, nematode and
insect eggshells, and insect cuticles.
They are necessary for various fungal
functions, including hyphal growth
(Takaya et al., 1998).

Extracellular Enzymes and Egg
Penetration: Besides chitinase,
Trichoderma may produce other lytic
enzymes that contribute to egg
penetration. So, a medium enriched
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with colloidal chitin can induce the
production of various extracellular
proteins, indicating the involvement of
additional enzymes in degrading the
eggshell structure.

Implications for Plant Immunity: 7.
asperellum T34 can act as a biological
control agent by priming the plant's
innate immune system. The primed
state enables the plant to respond more
effectively to subsequent pathogen
attacks, highlighting the potential of
using beneficial fungi to enhance crop

resistance naturally (Sahebani and
Hadavi, 2008).
Mechanism of Action: While

Trichoderma is generally found in the
soil or plant root tissues and not directly
within nematode-affected plant tissues,
it can still reduce nematode impact. It
achieves this through:

. Direct parasitism and
egg infection.
o Inducing systemic

resistance in the plant, which may limit
nematode penetration, feeding, and egg
hatching.

o Potential production of

metabolites with anti-nematode
activity.
Trichoderma based products

Trichoderma spp., are among the most
commonly used microbial biological
control agents in agriculture and are
presently marketed as biopesticides,
biofertilizers, growth enhancers, and
stimulants of natural resistance,
reducing environmental impact and the
risk of agrochemical residues in crops.
Fusarium vs Root-Knot nematodes:
Fusarium spp. has been evaluated in
different countries against RKNs.
Fusarium strains have successfully
managed RKNs in vitro and in vivo.
Their effectiveness comes from
producing many components in the
media. Fungal strains of Fusarium
parasitize directly on eggs and juveniles
of RKNs (Sahebani and Hadavi, 2008).
These fungi penetrate egg masses and
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consequently decrease their hatching
(Sahebani and Hadavi, 2008, and Zhang
et al., 2015). El-Qurashi et al. (2019)
and Qureshi et al. (2012) reported that
Fusarium and Trichoderma strains have
nematocidal activities against RKNs.

Plethora compounds have been
excreted from Fusarium  strains,
showing a high potential in controlling
RKNs. These compounds are found in
culture filtrate, inducing a suppression
of egg hatch or immobilization of
juveniles. Mani et al. (1986) established
that a blend of long-chain alkanes was
accountable for the toxicity of F. solani
to M. incognita. Ciancio (1995)
outlined that several commercially
available mycotoxins, typically
generated by Fusarium species, were
evaluated and determined to have a
nematicidal effect against M. javanica
at low doses.

Trichothecenes, such as
diacetoxyscirpenol and 4,15-
Diacetylnivalenol, are a significant
category of tricyclic sesquiterpene
mycotoxins that impede protein
synthesis and are synthesized by
Fusarium  species (Sweeney and
Dobson, 1998). These chemicals

generated by F. equiseiti have efficacy
against  plant-parasitic = nematodes
(Nitao et al., 2001).

Mode of Action:

. Some Fusarium species
can parasitize nematode eggs or
juveniles, disrupting their life cycle.

. Others produce
secondary  metabolites  toxic  to
nematodes, reducing their populations.

. Competitive exclusion
by colonizing root zones, Fusarium
strains outcompete nematodes for space
and nutrients.

Fusarium-based  products  are
gaining attention for their potential to
control  plant-parasitic  nematodes.
Through different mechanisms such as
parasitism, competition, or the
production of nematotoxic compounds.
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Eco-Friendliness:  Fusarium-based
products are a sustainable alternative to
chemical nematicides, reducing
environmental impact and the risk of
chemical residues in crops.

Plant Growth Promotion: Many
strains also have beneficial effects on
plant health by stimulating root growth
or enhancing nutrient uptake.

Example products or strains:

Some non-pathogenic strains of
Fusarium oxysporum are commercially
developed as biocontrol agents. F.
oxysporum strain 162 (Fo162) is known
for its ability to suppress nematode
populations while promoting plant
health (Dababat and Sikora, 2007).
Application and usage:

Soil Treatment: Incorporating the
product into the soil where nematodes
are active.

Seed Treatment: Coating seeds to
establish protective root-zone
colonization.

Drip Irrigation: Delivering spores or
formulated products through irrigation

systems.
Limitations:

Fusarium-based biocontrol agents
require optimal environmental

conditions (e.g., soil pH, moisture) for
effectiveness. Therefore, their activity
may vary based on nematode species,
population density, and crop type. So,
for best results, these products are often
integrated into broader Integrated Pest
Management (IPM) strategies, which
include crop rotation, resistant crop
varieties, and other biological or
cultural controls.

Types of formulations:

1. Spore-Based formulations:

These formulations rely on live
Fusarium spores that germinate and
colonize the rhizosphere (root zone),
exerting biocontrol effects against
nematodes. For instance: dried spore
powders or granules and liquid
suspensions containing fungal spores.
Application methods include: a) seed
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coating: coating seeds with fungal
spores before planting. b) soil drench:
spores are mixed with water and applied
to the soil around plants. C) Drip
irrigation: spores are delivered via
irrigation  systems  for  targeted
nematode control.
2. Mycelium-Based formulations:
These formulations use fungal
mycelium instead of spores, offering
rapid establishment in the soil.
Features: Effective for immediate
colonization and competition in the root
zone. Applications: Mixed into the soil
during planting or as a pre-planting soil
amendment.

3. Bio-Fertilizer Mixtures with
Fusarium:
Fusarium strains are sometimes

included in bio-fertilizers with multiple
benefits involving: a) enhanced root
health and nutrient uptake. b) nematode
suppression through root colonization.
For example, Bio-fertilizer
formulations  containing  Fusarium
oxysporum combined with beneficial
bacteria or fungi.

4. Encapsulated Formulations:

In these products, Fusarium spores
or metabolites are encapsulated in
protective materials, ensuring longer
shelf life and better survival under field
conditions.  Advantages: improved
stability, controlled release, and
compatibility with other IPM tools.
Application: direct soil application or
seed treatment.

5. Fermentation-Derived Metabolites:

Some products are based on
nematotoxic compounds produced by
Fusarium during fermentation. These
metabolites attack nematodes directly
or interfere with their reproduction. For
example: liquid concentrates or dried
powders  derived from  fungal
metabolites.

6. Pre-Mixed Soil Amendments:

Fusarium 1is integrated into organic
soil conditioners or compost-like
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materials to improve soil health while
reducing nematode populations.
Selecting a commercial product:
The choice depends on factors like

. Target Nematode:
Products are often specific to the
nematode species.

. Crop  Type: Some
products are tailored for particular
crops (e.g., vegetables, cereals,
ornamentals).

. Application ~ Method:
Compatibility with your existing

farming practices (e.g., seed coating,
irrigation).
Cladosporium
nematodes:

Cladosporium species, which belong
to the Fungi imperfect group, are
pigmented molds commonly found in
the air, organic matter, and food. Some
species are primarily present in tropical
and subtropical regions (Tasic and
Tasic, 2007). They are saprophytic
fungi that have been isolated from both
indoor and outdoor air (Park e al.,
2004), humans (Yew et al., 2016), and
various plant sources such as dead
plants, wood, food, straw, soil, dyes,
and textiles (Pereira ef al., 2002). This
genus belongs to the family
Dematiaceae, characterized by fungi
with melanin in the cell walls of hyphae
and conidia, forming colonies with
colors ranging from olive-grey to black
(Raut et al., 2021).

This genus can break down complex
carbohydrates and proteins, and its
genome (UMS843) encodes numerous
proteins  involved in  melanin
biosynthesis, siderophore production,
cladosins, and survival in high-salinity
environments (Yew et al., 2016). On
the other hand, Cladosporium species
are endophytic fungi isolated from
different plant tissues (Hamayun et al.,
2009, and Raut et al., 2021), like
medicinal plants, so they do not
produce plant damage. They are known
as plant protectants against different

VS. Root-Knot
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biotic and abiotic stresses. These
species improve the ability of plants to
adapt to new habitats and to sustain the
plant’s performance and health via
secretion of secondary metabolites.
Among the secreted metabolites,
gibberellins and hormones which are
responsible  for stimulating plant
growth, especially in seed germination,
stem elongation, and leaf expansion
(Archard and Genschik, 2009). Due to
their secondary beneficial metabolites,
Cladosporium can be used in agro-
industrial ~ applications, in  the
discoloration of textile dyes and the
degradation of keratin-containing
wastes from the natural environment

(Ademakinwa and Agboola, 2014;
Nwadiaro et al., 2015; Guan et al.,
2016, and Jakovljevic and Vrvic, 2018).

According to Amatuzzi et al. (2018),
C. sphaerospermum, isolated from
strawberry leaves, has also been used as
a biocontrol agent against the moth,
Duponchelia fovealis. Cladosporium
spp. have the ability to degrade the cell
wall of RKN eggs and juveniles. Also,
they developed their potential to
paralyze eggs and juveniles. In a
previous study (Figure 5),

Cladosporium suppressed egg hatch of
M. javanica and increased mortality
percent of second-stage juveniles as
well.

Figure (5): The parasitism of Cladosporium sphaerospermum on Meloidogyne javanica juveniles
(A) and eggs (B), (Taken by the Corresponding author).

Key features of Cladosporium as a
biocontrol agent:

Mode of Action:
o Parasitism:
Cladosporium can directly attack

nematode eggs by colonizing their
surfaces, penetrating the eggshells, and
degrading them.

. Antagonistic  activity:
Produces secondary metabolites with
nematotoxic effects that suppress
nematode populations.

. Competition: Colonizes
the rhizosphere and root surfaces,
effectively competing with nematodes
for space and nutrients.

. Induced Resistance:
Some strains can stimulate plant
defenses, enhancing the plant's ability
to resist nematode infections.

342

Environmental and Crop Safety:

Cladosporium spp. are
generally considered safe for the
environment and non-toxic to plants
and beneficial soil organisms. It is also
compatible with other IPM practices
and sustainable farming systems.
Applying with other biocontrol agents
(e.g., Trichoderma spp. or
Pseudomonas  fluorescens)  often
enhances efficacy.

Potential advantages:

. Sustainability: Offers an
eco-friendly alternative to chemical
nematicides, reducing the risk of soil
and water contamination.

. Ease of Cultivation:
Cladosporium fungi can be mass-
produced using agricultural residues,
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making them cost-effective for large-
scale applications.

. Adaptability:  Suitable
for use in diverse agricultural systems,
including field crops, horticulture, and

greenhouses.
Limitations:

. Environmental
Sensitivity: The effectiveness of

Cladosporium may depend on soil
conditions, temperature, and moisture
levels.

. Field Performance:
While laboratory results are promising,

consistent  efficacy under field
conditions can vary.
. Product  Availability:

Few commercial products are currently
available, as the use of Cladosporium
for nematode control is still under
development in many regions.
Application methods:

. Soil  Drench: Liquid
formulations containing Cladosporium
spores can be applied to the root zone.

. Seed Coating: Spores
are used to coat seeds, allowing fungal
colonization of roots as the plant grows.

. Compost or Organic
Amendments: Incorporating
Cladosporium-enriched compost into
soil.
Drechslerella

VS. Root-Knot

nematodes:
Drechslerella species belong to the
order Orbiliales, which includes a large

group of fungi. These fungi can produce
devices for trapping to attack different
animals. Drechslerella, which is known
for forming constricting rings, has been
isolated from nematode-infested roots
or soil (Murga-Gutierrez et al., 2012).
Besides, it was isolated from different
soil types, decayed root galls of tomato,
and leaf litter (Elshafie et al., 2006; Cho
et al., 2008, and Singh et al., 2019).
This genus evolved around 17 species
that trap nematodes by producing
constricting rings (Zhang and Hyde,
2014). The constricting ring consists of
three cells as outlined by Yu et al
(2014). Drechslerella has been shown
to effectively control RKNs both in
vitro and in vivo (Singh et al., 2019).
According to Hastuti et al. (2023),
Drechslerella reduced M. hapla by
97.7% after 72 hrs. Moreover,
constricting  ring-forming  fungus
(Arthrobotrys dactyloides) attacked M.
Jjavanica J2s with more than 90% after
3 days (Galper et al., 1995).

Drechslerella successfully
consumed RKN juveniles after 3 days
(unpublished data). When juveniles of
M. javanica moved through the
constricting rings, nematodes
stimulated constricting ring cells, which
increased in size and closed on
nematodes, preventing them from
moving. Finally, the fungus consumes
the nematode contents and grows
(Figure 6).

Figure (6): The constricting rings of Drechslerella. Where a) constricting rings of D. brochopaga,
b) Root-Knot nematodes J2 attached to constricting ring, c) J2 after D. brochopaga consumed the
nematode body content (Taken by the Corresponding author).
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Key Features of Drechslerella in
nematode control:
Mode of Action

Nematode Trapping: Drechslerella
produces trapping structures, such as

constricting rings, that physically
capture nematodes. Once trapped, the
fungus penetrates the nematode's

cuticle, invades its body, and digests its
contents.

Parasitism: The fungus directly
parasitizes nematode juveniles, thereby
significantly reducing their populations
in the soil.

Secondary Metabolites: The fungus
produces enzymes (e.g., proteases) and
other = compounds that degrade
nematode cuticles and contribute to
nematode mortality.

Target Nematodes

The fungus 1is highly effective
against Root-Knot nematodes
(Meloidogyne spp.). Also, targets other
plant-parasitic nematodes, such as
Pratylenchus (lesion nematodes) and
Heterodera (cyst nematodes).

Plant Protection:

The fungus controls nematodes in
the rhizosphere, protecting plant roots
and reducing root galling. Promotes
healthier root systems and indirectly
improves plant growth and yield.
Advantages of Drechslerella:

. Eco-Friendly: Provides
an environmentally sustainable
alternative to chemical nematicides,
with no harmful residues.

. Broad Adaptability:
Functions across diverse soil types and
agricultural systems.

. Synergy with IPM: The
fungus 1s compatible with other
biological control agents and practices,
such as organic amendments and
beneficial microorganisms.

. Durability: Once
established in the soil, Drechslerella
can persist and reproduce, providing
long-term nematode control.
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Limitations:

Environmental Sensitivity: Requires
favorable soil conditions (moisture,
organic matter) to thrive and produce
trapping structures.

Field Efficacy: Laboratory and
greenhouse studies have demonstrated
effectiveness, but field performance can
vary due to environmental factors.

Commercial Availability: Products
based on Drechslerella are still under
development, with limited commercial
formulations currently available.
Application methods:

Soil Drench: Spores or fungal
biomass can be applied to the soil,
where the fungus colonizes and
establishes a presence in the root zone.

Seed Treatment: Seeds coated

with  fungal spores allow early
colonization of the rhizosphere.
Organic Matter Enrichment:

Incorporating organic materials into the
soil may enhance fungal growth and
nematode-trapping activity.
Importance of biological control:

According to the biological control
definition, many  microorganisms
and/or their products are used
successfully for controlling pathogens.
In this regard, many products composed
of viruses, bacteria, yeasts, and fungi
are marketed and essential for
sustainable agriculture; nonetheless,
their actual use remains constrained
(Montesinos and Bonaterra, 2009).
Cook and Baker (1983) contended that
microbial products provide benefits,
including a) the lack of residues, b) eco-
friendliness, and ¢) low manufacturing
costs, relative to chemical pesticides.
Numerous biological control agents,
such as Trichoderma, and
Cladosporium, which stimulate plant
growth and induce systemic acquired
resistance, have been advocated for use
as plant fertilizers.

One of the most notable benefits of
biological control is its enduring
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efficacy. This indicates that it might be
a very economical pest management
strategy, with advantages potentially
surpassing the original project expenses
by significant margins (Hoddle, 2004).
A significant benefit of effective
biological control is the reduction in the
use of large quantities of pesticides,
which are recognized as detrimental to
non-target species, vertebrates, and
people. Over 100 types of advantageous
organisms are marketed for the
management of significant pests and
infections. Biocontrol agents provide
distinct  benefits, particularly in
scenarios where pests exhibit resistance
to insecticides. Moreover, the primary
benefit of using biological management
is its potential to serve as the only

remedy for the restoration of
ecosystems affected by invasive species
(Blossey et al., 2001).

Limitations of using biological control

Biological control applications have
disadvantages, such as the different
efficiency influenced by many biotic
and abiotic factors. Additionally, their
specificity is at a high level against the
target disease and pathogen, which may
require the application of multiple
microbial pesticides (Bonaterra et al.,
2012). Biocontrol, including the
introduction of non-native species, may
result in considerable ecological risks.
These species may become invasive,
disseminating beyond their introduction
area and adversely impacting the
ecosystem (Jennings et al., 2017).
Furthermore, while biocontrol is often
implemented on a limited scale, its
viability on a broader scale is still
questionable. Despite the genetic
stability of biocontrol agents, their
success has been limited, partly due to
the effects of climate change. Certain
biocontrol agents display predatory

behavior only in nutrient-deficient
conditions, rather than in normal
environments. For example,

Trichoderma species do not attack
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Rhizoctonia solani in the presence of
bark compost, since the availability of
cellulose affects the activation of genes
that encode chitinase, an enzyme
involved in parasitic behavior (Pal and
Gardener, 20006).

The  suboptimal efficacy of
microbial pesticides is often ascribed to
the failure of biocontrol agents to
adequately colonize and last in the
applied environment, where their
fitness  diminishes  under  field
circumstances. This is particularly true
for the phyllosphere and, to a lesser
extent, the rhizosphere, both of which
experience significant variations in
environmental and  phenological
conditions. Additionally, these regions
possess a robust native microbiota that
is difficult for non-native microbes to
supplant. Improving the
competitiveness of biocontrol agents in
the plant environment is essential for
augmenting their biocontrol efficacy,
and many ways may be used to
accomplish this (Bonaterra et al., 2012).

Overcoming the biological control
limitations:
An effective strategy involves

enhancing the nutritional environment
for the biological control agents to
boost their growth within the plant
ecosystem and/or to inhibit the growth
of competing microorganisms. This can
include using specific chemicals
alongside a biocontrol agent strain to
suppress competing or antagonistic
native microbes or adding nutrients to
formulations that the biocontrol agent
can utilize more effectively than the
pathogen. Such approaches have been
shown to improve the biocontrol
agent’s survival, adaptability, and
biocontrol effectiveness against various
plant pathogens (Guetsky et al., 2002,
and Druvefors et al., 2005). For
example, the effectiveness of biocontrol
for fire blight infections using
Pseudomonas  fluorescens 62e was
enhanced by adding glycine and Tween
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80, without impacting the infection
potential of the bacterium Erwinia
amylovora (Cabrefiga et al., 2011).
Another approach involves modifying
the physiology of the biological control
agent to help it withstand challenging
conditions after being applied in natural
environments (Such as soil,
rhizosphere, or phyllosphere). Many
microorganisms survive osmotic stress
by a process called osmoadaptation,
where they accumulate compatible
solutes (Like sugars, glycosides, amino
acids, and their derivatives) within their
cells. This adaptation can be triggered
by cultivating the microorganisms
under suboptimal conditions, allowing

them to endure drought, salinity,
freezing, and high temperatures,
thereby enhancing their ecological

fitness (Csonka and Hanson, 1991;
Miller and Wood, 1996; and Welsh and

Herbert, 1999). Combining
osmoadaptation with strategies like
nutritional enhancement further

strengthens the fitness of biocontrol
agents on aerial plant surfaces. A
method using both approaches has been
developed to boost colonization and
survival in the phyllosphere of
Rosaceous plants, thereby improving
the fitness and effectiveness of the fire
blight biocontrol agent, Pseudomonas
fluorescens EPS62e (Cabrefiga et al.,
2011).

Another approach to enhancing
biological control involves combining
antagonistic agents with different
biocontrol mechanisms (Spadaro and
Gullino, 2005, and Stockwell et al.,
2011). When compatible strains are
used together, they can achieve broader
colonization of the plant surface and
enhance key biocontrol traits, which
improves pathogen suppression across a
wider range of  environmental
conditions  than  when  applied
individually. For instance, combining
two P. fluorescens strains improved the
control of Phytophthora root rot in
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strawberries and reduced variability in
treatment outcomes (Agusti et al.,
2011).

Enhancing biocontrol agents can
also be achieved through genetic
modification, which has the benefit of
embedding sustainable traits in the
biocontrol agent's progeny. Breeding-
based approaches may be used to
overexpress genes that produce existing
metabolites, introduce new genes, or
develop strains that generate higher
levels of antimicrobial compounds, as
well as manipulate the timing of their
production (Walsh et al., 2001).
Various genetic modifications have
been applied to improve biocontrol in
the  rhizosphere, including the
overproduction  of  antimicrobial
compounds, as seen in 7. harzianum
and P. fluorescens CHAO (Flores et al.,
1997, and Girlanda et al., 2001). The
use of genetically engineered biocontrol
agent strains is restricted by the
European United (EU) regulations due
to  potential environmental and
ecological risks. EU legislation sets
stringent and comprehensive
requirements for the environmental
release and commercial wuse of
genetically modified biological control
agents, including extensive
environmental impact assessments and
risk analyses for both the biological

control agent and its products.
Although, these risks may be reduced
by  carefully selecting  genetic

constructs, opting for chromosomal
rather than plasmid-based gene
insertions, and using delivery systems
that limit translocation and dispersal
(van Elsas and Migheli, 1999).
Conclusion

Root-Knot nematodes are causing
more severe damage for most cultivated
crops worldwide. The initial step for
regulating Meloidogyne is identifying
the pest accurately using conventional
and molecular methods. Accurate
identification is crucial for selecting
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management  strategies. Biological
control nowadays is important as an
alternative to chemical control. Many
advantages and disadvantages have
been reported for biological control.
Thus, we can assume that the
advantages of biocontrol overcome
their cons. Trichoderma, Fusarium,
Cladosporium, and Drechslerella are
known as bioagents against
Meloidogyne. The ability of
Trichoderma to trigger hormone-
mediated defense responses illustrates
its potential for integrated disease
management in agriculture. The ability
of Cladosporium to degrade the
extensive disulfide crosslinking of
keratin polypeptides and solubilize the
keratin by secreting specialized
enzymes can be used to obtain plant
biostimulants and recommend
Cladosporium as a fungal agent to
promote plant growth. Drechslerella
traps J2s of Meloidogyne and decreases
their population densities in soil. On the
other hand, Trichoderma and Fusarium
successfully managed Meloidogyne by
producing many metabolites and
enzymes that degrade and toxic to
nematodes.
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