

Egyptian Journal of Plant Protection Research Institute

www.ejppri.eg.net

Nematophagous fungi as biocontrol agents for Root-Knot nematodes: A study of Trichoderma, Fusarium, Cladosporium, and Drechslerella

Mostafa, A. El-Qurashi^{1,2}; Ali, A. Almasrahi¹ and Fahad, A. Al-Yahia¹ Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.

²Department of Plant Pathology, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt.

ARTICLE INFO

Article History
Received: 31/7 /2025
Accepted: 28/9/2025
Keywords

Biological control, PCR, *Meloidogyne*, advantages, disadvantages, and limitations.

Abstract

Root-Knot nematodes (RKNs), which belong to Meloidogyne spp., are considered the most devastating plant pathogens that limit the production of the majority of the cultivated crops worldwide. These nematodes placed the first rank among the top ten plant-parasitic nematodes and are responsible for more than 50% of yield losses caused by plantparasitic nematodes worldwide. Morphological characteristics of RKNs have been used for a long time for identification. Nowadays, many molecular marker PCR-based methods have evolved for identification. Biological control was the strategy that got more attention and has been used recently for managing nematodes. In this regard, Trichoderma, Fusarium, Cladosporium, and Drechslerella have received more attention for the management of RKNs. These fungi developed their ability to reduce nematode populations in soil. They attack nematodes directly via parasitism or by producing metabolites and enzymes that degrade nematode cell walls or produce trapping organs that catch the nematodes. Thus, it is crucial for accurate nematode identification by different methods for employing the best management strategy. Prospect studies should focus on the isolation, identification, and screening of nematophagous fungi applications for controlling RKNs.

Introduction

Plant-parasitic nematodes (PPNs) are a group of nematodes that feed on living plant cells. They belong to the kingdom Animalia and are placed among the most serious plant pathogens for agricultural crops worldwide. More than 4100 species of PPNs have been described around the world (Jones *et al.*, 2013). According to Hunt *et al.* (2018), PPNs are classified according to their parasitism as ectoparasites (Nematode doesn't enter plant tissues

remains in soil), and semiendoparasites (The anterior part of the nematode penetrates the plant root while the posterior part remains in soil), endoparasites (The whole nematode body penetrates the root tissues). There are two kinds of endoparasites: migratory endoparasites (Still moving inside plant tissues and have no fixed feeding site) and sedentary endoparasites (They have a fixed site of feeding and induce nurse cells or syncytia, mostly become obese,

and thereby lose their mobility). The annual losses caused by PPNs are 8.8-14.6% worldwide (Nicol et al., 2011). This estimation may be less than the real estimation due to the default estimation in different countries. In 2023. Ouintanilla and Fazlabadi reported that PPNs cause more than 60% yield losses. By direct and indirect damage, PPNs decrease yield and crop quality as well as increase production costs and income losses. Damage caused by PPNs is characterized by stunting, premature wilting, yellowing, root malformation, nutrient deficiencies that occur in patches throughout the field as a result of irregular distribution of nematodes in soil. Root-Knot nematodes (Meloidogyne spp.), cyst nematodes (Heterodera and Globodera), and rootlesion nematodes (Pratylenchus spp.) are among the most destructive plantparasitic nematodes worldwide (Quintanilla and Fazlabadi, 2023).

Root-Knot nematodes (Meloidogyne polyphagous, sedentary spp.) are endoparasites that pose a serious threat to crop production (Peiris et al., 2020). Relying on economic and scientific importance, RKNs ranked first among the top ten PPNs worldwide (Jones et al., 2013). This genus involves more than 100 species described; the most important of them worldwide are M. incognita, M. javanica, M. arenaria, and M. hapla (Elling, 2013; Coyne et al., 2018, and Sikandar et al., 2020). According to Elling (2013), the host range of RKNs exceeds 3000 plant species. RKNs caused losses in agricultural production crops of about \$78 billion annually around the world (Lima et al., 2017). According to Wendimu (2021), the taxonomic classification of RKNs is Domain: Eukaryota, Kingdom: Metazoa, Phylum: Nematoda, Class: Secernentea. Order: Tylenchida,

Family: Heteroderidae, Genus: *Meloidogyne*.

Many strategies have been used for controlling RKNs, including chemical control, cultural control, physical biological control. methods. and Chemical control is a widespread practice; they have proved to be a useful and reliable means of controlling a wide range of PPNs. Recently, exaggerated use of nematicides has caused soil and environmental pollution and hazards (El-Qurashi et al., 2025). Additionally, farmers are not careful when using nematicides and sometimes use more than the recommended dose. Chemical control also became more expensive due to the rise of synthesis costs of new compounds. Cultural methods like adding plant amendments or changing planting time can be effective in controlling RKNs but are not economical. Physical methods can also be used for controlling RKNs. Soil fallowing during hot and dry weather, immersing soil with water, and plowing soil more times are also used for reducing RKNs population but are not economically effective as well.

Regarding botanical nematicides. more than 100 plant species have been evaluated for controlling PPNs. Plant extracts and crude extracts have exhibited inhibitory effects against RKNs. Most fungal, bacterial, yeast, and actinomycete isolates have been used for controlling RKNs. Fungal antagonists of nematodes include both nematophagous and nonnematophagous fungi that have detrimental effects on nematodes (Chen and Dickson, 2004). The benefits of biocontrol agents are that they can compete and persist in the environment, colonize the niches rapidly, proliferate on newly formed roots.

Nematophagous fungi were categorized as predacious fungi, endoparasites of vermiform worms, parasites of sedentary females and eggs,

fungi produce antibiotic that compounds, and vesicular-arbuscular mycorrhizal fungi (Chen and Dickson, 2004). Some individual fungi can belong to different categories, so there is no clear-cut distinction between these categories. Predacious fungi capture nematodes by forming specific devices, then kill and consume their prey. These devices are adhesive hyphae, branches, nets and knobs, non-constructing and constructing rings and stephanocysts (Barron, 1977). Regarding RKNs management, Fusarium, Trichoderma, Arthrobotrys, Dactylella, Aspergillus, Purpureocillium, and Verticillium have been successfully used to control RKNs (Barron, 1977).

Root-Knot nematodes (*Meloidogyne* spp.):

The first recorded instance of Root-Knot nematode disease transpired in the mid-19th century, when galls were seen on the roots of cucumber (Cucumis sativus) in a greenhouse (Berkeley, 1855). Anguillula marioni Cornu, 1879, was the first species of Root-Knot nematode to be found; it formed galls on the roots of sainfoin (Onobrychis sativus) in France (Hunt and Handoo, 2009). Chitwood separated the genera Meloidogyne and Heterodera in 1949 based on morphological differences, whereas Göldi established the name Meloidogyne in 1887 (Chitwood, 1949) and Moens et al., 2009). The descriptions of Meloidogyne arenaria (Neal, 1889) Chitwood, 1949. Meloidogyne incognita (Kofoid and Chitwood, White, 1919) Meloidogyne javanica (Treub 1885) Chitwood, 1949, and Meloidogyne hapla Chitwood, 1949 were among the later updates (Moens et al., 2009).

Root-Knot nematodes (Meloidogyne spp.) are considered one of the most crucial plant pathogens that limit plant production for most cultivated plants worldwide. Their world distribution, massive host range, and interaction with other plant pathogens causing disease complexes rank them among the major pathogens affecting the world food supply (Sasser, 1980). In 2013, Jones et al. ranked RKNs as the first plant pathogens out of the top ten plant nematodes that caused economic losses for crops. In Saudi Arabia, M. javanica is the most dominant species and causes very severe damage to vegetables, followed by M. incognita, which occurs mostly on shrubs and 1995). (Al-Hazmi et al., Moreover, ornamentals and horticultural trees were also found to be with *Meloidogyne* attacked (Mokbel, 2014). *Meloidogyne* spp. were also recorded to infect coffee trees in the Jazan region (Al-Hazmi et al., 2009, and Mohamed et al., 2023) and some greenhouse vegetable crops in the Riyadh region as well (Almohithef et al., 2018).

Root-Knot nematode life cycle:

The life cycle of RKNs consists of four juvenile stages (J1 in eggs, J2, J3, and J4) and adults. Inside roots (Figure 1), females lay eggs containing J1 that develop into J2 and hatch from eggs. J2s infect plant roots and develop into J3 and J4 (sedentary phases). Then, J4 molts to adult females, which remain in roots and produce egg masses (Sikandar et al., 2020). In RKNs, especially M. incognita and M. javanica, mitotic parthenogenesis was the common reproductive method (Hussey Janssen, 2002).

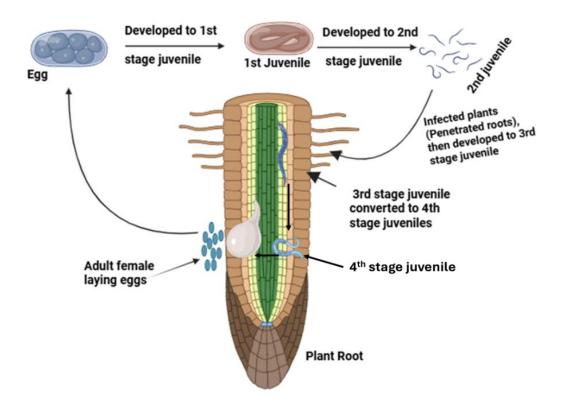


Figure (1): The life cycle of Root-Knot nematodes (El-Qurashi and Al-Yahya, 2025).

Crop losses caused by Root-Knot nematodes:

In 1987, Sasser and Freckman estimated the crop losses due to plantparasitic nematodes at 8.8-14.6% worldwide. However, in 2020, there was a high increase in crop losses caused by plant-parasitic nematodes, which were estimated to be 21.3% of production (Kumar et al., 2020). The majority of crop losses are caused by RKNs, which affect virtually every crop plant (Mukherjee et al., 2011). Meloidogyne spp. caused losses for tobacco, soybean, peanuts, vegetable crops by more than 50% of nematode losses worldwide (McSorley et al., 1987, and El-Ourashi et al., 2023). M. javanica and M incognita caused 20 to 30% losses in chickpea production in India (Ali and Sharma, 2003). M. graminicola caused losses of 16-32% of rice yield (Mukherjee et al., 2011). While in 2020, Kumar et al. estimated losses caused by M. graminicola by 16% in

rice. Additionally, *Meloidogyne* spp. Caused 25, 18, 23, 23, 4.5- 16, and 19.75% losses in fruit, vegetables, horticultural, pulse, oilseed, and fiber crops, respectively.

Root-Knot nematode identification:

Traditionally, RKNs were identified using morphometric methods such as the morphology of the perineal pattern, male head morphology, size and shape of the stylet, and the distance from the stylet base to the dorsal esophageal gland orifice (DGO) (Cunha et al., males. 2018). For supplementary characteristics encompass body size, labial cap morphology and height, number of annulations, diameter of the labial region in relation to the first body (Figure 2), stylet length, configuration of the stylet cone, shaft, and basal knobs, length of the stylet cone, distance between the stylet knobs and the dorsal gland opening, metacarpus lumen lining, distance from the anterior end to the excretory pore, phasmid position and length, and spicule morphology.

Egypt. J. Plant Prot. Res. Inst. (2025), 8 (3): 329-359

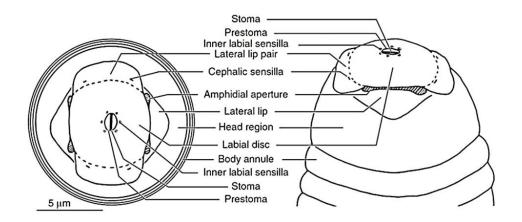


Figure (2): Drawings of the anterior end of a Meloidogyne male (Eisenback and Hunt, 2009).

Measurements of juvenile body and stylet length, morphology of the labial region, configuration of stylet knobs, location of the hemizonid, distance from the anterior end to the stylet knobs, distance from the stylet base to the dorsal gland orifice (DGO), enumeration of lines in the lateral field, along with the shape, length of the tail, and length of the hyaline terminus, are also considered.

For decades, the female perineal pattern (Figure 3) has been the only main technique used for RKN species

identification (Seesao et al., 2017). In 1981, Eisenback et al. reported that host plants were used for differentiating between the four major species of Meloidogyne (Table 1). These morphological characteristics are perhaps not satisfying due to the RKN species being close in morphological characteristics like stylet shape and size. Perineal patterns and host differential plants are used mainly for differentiating between the four major RKN species only.

Figure (3): Different characteristics of RKN female perineal pattern (Karssen and Moens, 2006).

Table (1): Response of the differential hosts to the four major species of Root-Knot nematodes and their races.

RKN species	Differential hosts					
	Cotton (Deltapine 16)	Tobacco (NC 95)	Pepper (California Wonder)	Watermelon (Charleston Gray)	Peanut (Florunner)	Tomato (Rutgers)
Meloidogyne incognita race 1	-	-	+	+	-	+
Meloidogyne incognita race 2	-	+	+	+	-	+
Meloidogyne incognita race 3	+	-	+	+	-	+
Meloidogyne incognita race 4	+	+	+	+	-	+
Meloidogyne arenaria race 1	-	+	+	+	+	+
Meloidogyne arenaria race 2	-	+	-	+	-	+
Meloidogyne javanica	+	+	-	+	-	+
Meloidogyne hapla	_	+	+	-	+	+

(-) indicates not host (Resistant); (+) indicates good host (Susceptible), (Eisenback et al., 1981).

So, other methods should be used, like biochemical and molecular DNA-based techniques. Isozyme phenotypes are used successfully for diagnosing the RKNs worldwide. This technique was used for the first time by Esbenshade and Triantaphyllou (1985) when they reported different esterase patterns from 16 RKN species. The stability of isozyme phenotypes within different individuals of RKNs make it a crucial tool to use worldwide (Blok and Powers, 2009).

A drawback of this method is that it can only be used with mature females, as the specific gene required for its success is only expressed in mature females. DNA-based techniques for the identification of Meloidogyne species were first documented in the 1980s, with Curran et al. (1985) using restriction fragment length polymorphisms (RFLPs). In the last ten years, molecular diagnostics nematodes have advanced markedly due to the invention and use of polymerase chain reaction (PCR) (Nega, 2014). Root-Knot nematode species have been identified using a variety of DNA-based methods, including satellite DNA probes and PCR, ribosomal DNA (rDNA) PCR, mitochondrial DNA (mtDNA) PCR, sequence-characterized amplified regions (SCARs), random amplified polymorphic DNA (RAPDs), microarrays, amplified fragment length polymorphisms (AFLP), PCR targeting rDNA, mt DNA, internal transcribed spacer (ITS), and ribosomal intergenic

spacer (IGS) sequences, and real-time PCR (Blok and Powers. 2009). Molecular approaches for the identification of *Meloidogyne* species always evolving, with anticipation of more advanced methodologies with emerging advancements in molecular technology.

Biochemical techniques:

Isozymes and antibodies are two biochemical methods that have been applied to identify *Meloidogyne* species (Blok and Powers, 2009). The use of isozyme phenotypes for identification began with Esbenshade Triantaphyllou (1985),who demonstrated that different esterase patterns could differentiate 16 species of Root-Knot nematodes. Since then, researchers have adopted isozyme phenotypes. particularly carboxylesterase/esterase, as a routine method for identifying Meloidogyne species (Blok and Powers, 2009). While isozyme phenotypes remain consistent across different individuals, making it a valuable identification tool, a drawback of this method is that it can only be applied to mature females. The specific gene required for this process is only expressed in mature females (Blok and Powers, 2009).

An antibody-based capture technique was created to enhance nematode extraction from soil since plant-parasitic nematodes are tiny and have an uneven distribution in soil, making it difficult to identify them in plant samples. This technique utilizes an antibody that adheres to the surface

of the target nematode after incubation with extracted worms (Chen et al., 2001; Blok and Powers, 2009, and Nega, 2014). Subsequently, magnetic beads coated with a secondary antibody are added, and a magnet seizes the target species, eliminating non-targets 2003). (Chen et al., immunomagnetic capture approach enables the recovery of Meloidogyne species from soil samples with a success rate of up to 80% (Chen et al., 2001 and 2003).

Ribosomal and mitochondrial DNA PCR:

While SCAR-PCR has demonstrated significant efficacy in differentiating various Meloidogyne species, several universal primers have been evaluated in the last few years for identification of Meloidogyne spp. (Tigano et al., 2010; Onkendi and Moleleki, 2013a; Onkendi et al., 2014; Bekker et al., 2016; Janssen et al., 2016 El-Qurashi al., and et 2017). Nonetheless, the majority of these primers have had difficulties consistently distinguishing between Meloidogyne species. Research conducted by Onkendi and Moleleki (2013b) using IGS-rDNA and mtDNA demonstrated sequences that incognita, M. javanica, and M. arenaria grouped as a singular Simultaneously, examination of D2-D3 28S rDNA sequences categorized M. incognita and M. enterolobii as a single clade, while M. arenaria and M. javanica constituted distinct clades. Furthermore, partial 18S and 28S rDNA sequences from the M. incognita population in China exhibited 99% similarity with other tropical species such as M. incognita, M. arenaria, M. javanica, and M. floridensis (Zeng et al., 2014), underscoring inadequacies of these primers in precisely distinguishing these species. Specific DNA sections, including 18S, ITS, and 28S, may distinguish specific

tropical species such as M. incognita, M. javanica, and M. arenaria, as shown in research on M. hispanica (Landa et al., 2008) and M. enterolobii (Bekker et al., 2016). Janssen et al. (2016) determined that the COI, COII, COIII, and 16S segments were insufficient for differentiating M. incognita, arenaria and M. javanica. The low sequence diversity in the ITS1, ITS2, and 5.8S regions among the mitotically parthenogenetic species M. arenaria, M. incognita, and M. javanica renders these areas inadequate for distinction (De Ley et al., 1999 and Blok, 2005). The COII/16S (C2F3/1108) marker has effectively utilized for the identification of Meloidogyne spp. (Powers and Harris, 1993; Blok et al., 2002 and Powers et al., 2005); however, it did not yield amplification products for Turkish Meloidogyne spp. (Devran and Söğut, 2009), rendering it for precise unreliable species identification.

SCAR-PCR:

Given the limitations of various recently developed universal primers in reliably distinguishing Meloidogvne species, other established molecular methods such as RAPD and SCAR-PCR are essential for confirming species identification (El-Qurashi et al., 2017). SCAR-PCR, developed specifically for diagnostic use, focuses on a specific DNA segment and is particularly effective for identifying species with minimal genetic differences based on DNA fragment length (Blok and Powers, 2009). For example, three RAPD markers have effectively differentiated the Root-Knot nematode species; M. arenaria, M. incognita, and M. javanica. Three species-specific primers developed for SCAR-PCR have successfully identified many Meloidogyne species, precisely distinguishing thermophilic species: M. arenaria, M. incognita, M. javanica, and M.

enterolobii. This technique efficiently distinguishes the cryophilic species: M. hapla, M. fallax, and M. chitwoodi (Zijlstra, Furthermore, three pairs of speciesspecific primers have been used in multiplex PCR for the quick identification of M. incognita, M. enterolobii, and M. javanica from DNA recovered from individual galls (Hu et al., 2011).

Genotyping using Sequencing:

Genotyping by Sequencing (GBS) is one of the high-throughput molecular approaches that has recently gained popularity and proved useful for genetic research (Elshire et al., According to Jarquín et al. (2014), GBS is a simple technique that employs nextgeneration sequencing of genomic fragments, such as those from nematodes, produced by certain restriction enzymes, followed using bioinformatics analysis a pipeline. This approach demonstrates significant accuracy in elucidating intricate genetic information across several species. GBS is especially advantageous for investigating nematode genes by identifying the Polymorphisms Single Nucleotide (SNPs) across several loci and has been successfully used to assess genetic diversity in cyst nematodes (Mimee et al., 2015). GBS, on the other hand, is not an identifying tool. In contrast, Rashidifard et al. (2018) used GBS for the first time to investigate genetic diversity and perform phylogenetic analysis Meloidogyne of populations.

Biological control of Root-Knot nematodes:

Plethora strategies have been used for managing RKN worldwide. Chemical nematicides are considered the most effective strategy. However, it is causing harmful effects on the environment, microflora, animal, and human, and polluting underground water. So, most nematicides have been banned from global markets. Recently, a lot of attention has been given to biological control. Biological control is defined as using organisms or their metabolites to decrease the population density of another organism (Bale et al., 2008). Different strains of bacteria, fungi, actinomycetes, yeasts, nematodes, and mites have been utilized for managing RKN. Fungal antagonists of nematodes categorized based on their mechanisms action as predacious endoparasites of vermiform worms, parasites of sedentary stages, antibioticproducing fungi, and vesiculararbuscular mycorrhizal fungi (Chen and Dickson, 2004). Predacious fungi attack nematodes by producing special devices, including adhesive hyphae, branches, nets, and knobs, and nonconstructing and constructing rings (Figure 4). Fungal endoparasites of vermiform nematodes are obligate (Hirsutella. Verticillium, Haptoglossa) or facultative (Catenaria and Verticillium) parasites. Fungi that attack nematode females, egg masses, cysts, and eggs are known as sedentary parasitic fungi. The final group is fungi that produces toxic metabolites or enzymes that may inhibit or stimulate egg hatches. Trichoderma, Fusarium Paecilomyces, Penicillium, Aspergillus, Arthrobotrys, Drechslerella (Chen and Dickson, 2004 and Al-Hazmi et al., 2019). The potency of certain fungi against RKNs, such as T. harzianum, T. hamatum, and T. viride, has been proved by Javeed et al. (2016), who provided the ability of these fungi to control M. javanica in vitro and in vivo. lilacinus. *T*. harzianum were suppressed M. javanica egg hatch and increased J2s mortality percent alone and combined with humic acid (Al-Hazmi and Javeed, 2015; Javeed and Al-Hazmi, 2015 and Al-Hazmi et al., 2019).

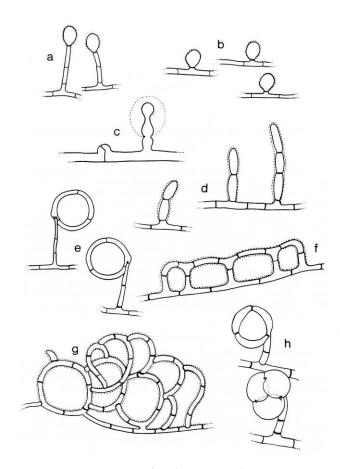


Figure (4): Structures created by predatory fungi. (a) Adhesive knobs on stalks. (b) Sessile sticky knobs. (c) Adhesive knob of *Nematoctonus*. (d) Adhesive branches. (e) Non-constricting rings. (f) Two-dimensional sticky mesh. (g) Three-dimensional sticky net. (h) Constricting rings (Barron, 1977).

Microbial pesticides mechanisms:

Comprehending the mechanisms of biocontrol in microbial pesticides is essential for the effective reduction of pathogens in their hosts. Certain strains utilize a singular biocontrol method, whereas others employ a combination of strategies. Antibiosis, a phenomenon in which microbes suppress plantpathogenic bacteria and fungi, frequently observed in fruit trees. Bacillus subtilis synthesizes cyclolipopeptides, such as fengycins, which serve to protect apple fruits from gray mold (Botrytis cinerea) (Ongena et al., 2005). Additional approaches involve phenolic antifungal compounds, such pyrrolnitrin as derived from Pseudomonas cepacia and (Janisiewicz Roitman. 1988), bacteriocins like herbicolin

pantocins sourced from Pantoea species (Ishimaru et al., 1988; Wright et al., 2001, and Smits et al., 2010), and lytic enzymes from Trichoderma harzianum aimed at controlling Penicillium expansum in apples (Batta, 2004). Competitive exclusion occurs when biocontrol agents outcompete pathogens for essential nutrients and colonization sites. This mechanism is prevalent in the postharvest decay of pome fruits and in the management of fire blight (Sharma et al., 2009 and Cabrefiga et al., 2007).

Various hyperparasites, such as yeasts and fungi, including *Pichia* and *Trichoderma*, have the capability to directly degrade fungal cells, synthesize antimicrobial compounds, establish hyperparasitism, disrupt pathogen signaling, or trigger resistance in plant

hosts (Harman, 2006). Fungal viruses and bacteriophages may be employed to target specific pathogens (Jones et al., 2007; Ghabrial and Suzuki, 2009). Spadaro and Gullino (2004) indicate certain microbes, including bacterial and fungal strains, can activate plant defense mechanisms through the release of elicitors, such as cell wall components, or signaling molecules, such as salicylic acid. Finally, specific biocontrol agents impede pathogens by breaking down chemical signals essential for quorum sensing, which pathogens use to initiate infection (e.g., acyl homoserine lactones) (Molina et al., 2003).

Trichoderma vs Root-Knot nematodes:

Trichoderma strains are extensively used as biocontrol agents against Root-Knot nematodes all over the world. By entering egg masses and juveniles, Trichoderma species have shown efficacy in regulating RKNs both in vitro and in vivo. This decreases egg hatching and raises the mortality rate of second-stage juveniles (J2s) (Sahebani and Hadavi, 2008). According to Khan et al. (2020), the species and growth medium composition have an impact on *Trichoderma*'s effectiveness. Furthermore, Trichoderma generates several compounds and enzymes that degrade the cell walls of RKN stages and paralyze J2s and eggs (Sidhu et al., 2014). In addition to its ability to suppress nematodes, Trichoderma also generates phytohormones that stimulate plant development and stimulate plant plant systemic resistance against diseases (Goswami et al., 2008). T. harzianum promotes plant development synthesis of secondary the metabolites, including harzianic acid, harzianolide, auxin, abscisic acid, and 6-pentyl-2H-pyran-2-one (Goswami et al., 2008, and Zin and Badaluddin, 2020). These compounds enhance lateral root development, root length,

root surface area, root tips, seed germination, and seedling growth (Vinale *et al.*, 2013, and Cai *et al.*, 2013).

The effects of Trichoderma on enhancing plant defense mechanisms nematodes and inducing against systemic resistance are illustrated in the next key points: Increased Enzyme Activities: T. harzianum markedly enhances the activity of defense-related as phenylalanine enzymes such ammonia-lyase (PAL), peroxidase (POX), and polyphenol oxidase (PPO). This signifies an induced resistance response in plants. Howell et al. (2000), Evans et al. (2003), and Coppola et al. (2019) have shown that T. harzianum colonization may enhance the levels of certain defensive enzymes, such as chitinase, β -1,3-glucanase, and lipoxygenase.

Parasitism and Enzyme Secretion: Trichoderma can directly parasitize nematode eggs and juveniles by secreting enzymes such as chitinase and protease, which aid in breaking down the protective structures of the eggs. Sharon et al. (2001) demonstrated direct parasitism by T. harzianum T-203 on *M. javanica*, with extracellular protease being involved, although the rate of parasitism was low. The involvement of chitinases in attacking nematode eggs also been documented in other fungi like Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Pochonia spp., which were found in infected nematode eggs (Khan et al., 2003; Tikhonov et al., 2002, and Hao et al., 2025). This supports the concept that these enzymes facilitate the infection and degradation of nematode eggs by breaking down the chitinous structure of the eggshell.

Implications for Plant Health: The use of *Trichoderma* can be seen as a dual approach, providing direct antagonistic action against nematodes and boosting the plant's defensive

responses, making it a valuable agent in biological control strategies against nematode pests. Ahmed *et al.* (2010) documented the potential of five *Trichoderma* species, namely *T. harzianum, T. hamatum, T. lignorum, T. glaucum* and *T. koningii* were applied as seed dressing for enhancing plant fresh weight of sunflower, okra, and cowpea and mitigating *M. incognita* Root-Knot nematode infection.

Increase in Defense Hormones: In cucumber cotyledons, inoculation with T. asperellum T34 led to increased concentrations of salicylic acid (SA) and jasmonic acid (JA) within a timeframe of 3 to 48 hrs. (Segarra et al., 2007). Both SA and JA are crucial signaling molecules in plant defense pathways. Salicylic acid is generally associated with systemic acquired resistance (SAR) against biotrophic pathogens, while jasmonic acid is linked resistance to against necrotrophic pathogens and herbivores (Kamle et al., 2020).

Enzymatic Activity in *Trichoderma*: *Trichoderma*, like the other nematophagous fungi, can produce extracellular chitinase and protease enzymes. These enzymes help the fungus to penetrate the chitinous and proteinaceous barriers of nematode eggs. So, it's noted that there was an increase in the proportion of infected nematode eggs as chitinase activity rose.

Chitinase Role: Chitinases are inducible enzymes that break down chitin, which is an essential component of fungal cell walls, nematode and insect eggshells, and insect cuticles. They are necessary for various fungal functions, including hyphal growth (Takaya *et al.*, 1998).

Extracellular Enzymes and Egg Penetration: Besides chitinase, *Trichoderma* may produce other lytic enzymes that contribute to egg penetration. So, a medium enriched with colloidal chitin can induce the production of various extracellular proteins, indicating the involvement of additional enzymes in degrading the eggshell structure.

Implications for Plant Immunity: *T. asperellum* T34 can act as a biological control agent by priming the plant's innate immune system. The primed state enables the plant to respond more effectively to subsequent pathogen attacks, highlighting the potential of using beneficial fungi to enhance crop resistance naturally (Sahebani and Hadavi, 2008).

Mechanism of Action: While *Trichoderma* is generally found in the soil or plant root tissues and not directly within nematode-affected plant tissues, it can still reduce nematode impact. It achieves this through:

- Direct parasitism and egg infection.
- Inducing systemic resistance in the plant, which may limit nematode penetration, feeding, and egg hatching.
- Potential production of metabolites with anti-nematode activity.

Trichoderma based products Trichoderma spp., are among the most commonly used microbial biological control agents in agriculture and are presently marketed as biopesticides, biofertilizers, growth enhancers, and stimulants of natural resistance, reducing environmental impact and the risk of agrochemical residues in crops.

Fusarium vs Root-Knot nematodes:

Fusarium spp. has been evaluated in different countries against RKNs. Fusarium strains have successfully managed RKNs in vitro and in vivo. Their effectiveness comes from producing many components in the media. Fungal strains of Fusarium parasitize directly on eggs and juveniles of RKNs (Sahebani and Hadavi, 2008). These fungi penetrate egg masses and

consequently decrease their hatching (Sahebani and Hadavi, 2008, and Zhang et al., 2015). El-Qurashi et al. (2019) and Qureshi et al. (2012) reported that Fusarium and Trichoderma strains have nematocidal activities against RKNs.

Plethora compounds have been from Fusarium excreted showing a high potential in controlling RKNs. These compounds are found in culture filtrate, inducing a suppression of egg hatch or immobilization of juveniles. Mani et al. (1986) established that a blend of long-chain alkanes was accountable for the toxicity of F. solani to M. incognita. Ciancio (1995) outlined that several commercially available mycotoxins. typically generated by Fusarium species, were evaluated and determined to have a nematicidal effect against M. javanica at low doses.

Trichothecenes, such as diacetoxyscirpenol and 4.15-Diacetylnivalenol, are a significant category of tricyclic sesquiterpene mycotoxins that impede protein synthesis and are synthesized by Fusarium species (Sweeney 1998). These chemicals Dobson, generated by F. equiseiti have efficacy plant-parasitic nematodes against (Nitao et al., 2001).

Mode of Action:

- Some *Fusarium* species can parasitize nematode eggs or juveniles, disrupting their life cycle.
- Others produce secondary metabolites toxic to nematodes, reducing their populations.
- Competitive exclusion by colonizing root zones, *Fusarium* strains outcompete nematodes for space and nutrients.

Fusarium-based products are gaining attention for their potential to control plant-parasitic nematodes. Through different mechanisms such as parasitism, competition, or the production of nematotoxic compounds.

Eco-Friendliness: *Fusarium*-based products are a sustainable alternative to chemical nematicides, reducing environmental impact and the risk of chemical residues in crops.

Plant Growth Promotion: Many strains also have beneficial effects on plant health by stimulating root growth or enhancing nutrient uptake.

Example products or strains:

Some non-pathogenic strains of *Fusarium oxysporum* are commercially developed as biocontrol agents. *F. oxysporum* strain 162 (Fo162) is known for its ability to suppress nematode populations while promoting plant health (Dababat and Sikora, 2007).

Application and usage:

Soil Treatment: Incorporating the product into the soil where nematodes are active.

Seed Treatment: Coating seeds to establish protective root-zone colonization.

Drip Irrigation: Delivering spores or formulated products through irrigation systems.

Limitations:

Fusarium-based biocontrol agents require optimal environmental conditions (e.g., soil pH, moisture) for effectiveness. Therefore, their activity may vary based on nematode species, population density, and crop type. So, for best results, these products are often integrated into broader Integrated Pest Management (IPM) strategies, which include crop rotation, resistant crop varieties, and other biological or cultural controls.

Types of formulations:

1. Spore-Based formulations:

These formulations rely on live *Fusarium* spores that germinate and colonize the rhizosphere (root zone), exerting biocontrol effects against nematodes. For instance: dried spore powders or granules and liquid suspensions containing fungal spores. Application methods include: a) seed

coating: coating seeds with fungal spores before planting. b) soil drench: spores are mixed with water and applied to the soil around plants. C) Drip irrigation: spores are delivered via irrigation systems for targeted nematode control.

2. Mycelium-Based formulations:

These formulations use fungal mycelium instead of spores, offering rapid establishment in the soil. Features: Effective for immediate colonization and competition in the root zone. Applications: Mixed into the soil during planting or as a pre-planting soil amendment.

3. Bio-Fertilizer Mixtures with *Fusarium*:

Fusarium strains are sometimes included in bio-fertilizers with multiple benefits involving: a) enhanced root health and nutrient uptake. b) nematode suppression through root colonization. For example, Bio-fertilizer formulations containing Fusarium oxysporum combined with beneficial bacteria or fungi.

4. Encapsulated Formulations:

In these products, *Fusarium* spores or metabolites are encapsulated in protective materials, ensuring longer shelf life and better survival under field conditions. Advantages: improved stability, controlled release, and compatibility with other IPM tools. Application: direct soil application or seed treatment.

5. Fermentation-Derived Metabolites:

Some products are based on nematotoxic compounds produced by *Fusarium* during fermentation. These metabolites attack nematodes directly or interfere with their reproduction. For example: liquid concentrates or dried powders derived from fungal metabolites.

6. Pre-Mixed Soil Amendments:

Fusarium is integrated into organic soil conditioners or compost-like

materials to improve soil health while reducing nematode populations. Selecting a commercial product: The choice depends on factors like

- Target Nematode: Products are often specific to the nematode species.
- Crop Type: Some products are tailored for particular crops (e.g., vegetables, cereals, ornamentals).
- Application Method: Compatibility with your existing farming practices (e.g., seed coating, irrigation).

Cladosporium vs. Root-Knot nematodes:

Cladosporium species, which belong to the Fungi imperfect group, are pigmented molds commonly found in the air, organic matter, and food. Some species are primarily present in tropical and subtropical regions (Tasic and Tasic, 2007). They are saprophytic fungi that have been isolated from both indoor and outdoor air (Park et al., 2004), humans (Yew et al., 2016), and various plant sources such as dead plants, wood, food, straw, soil, dyes, and textiles (Pereira et al., 2002). This belongs to the family genus Dematiaceae, characterized by fungi with melanin in the cell walls of hyphae and conidia, forming colonies with colors ranging from olive-grey to black (Răut et al., 2021).

This genus can break down complex carbohydrates and proteins, and its genome (UM843) encodes numerous involved proteins in melanin biosynthesis, siderophore production, cladosins, and survival in high-salinity environments (Yew et al., 2016). On the other hand, Cladosporium species are endophytic fungi isolated from different plant tissues (Hamayun et al., 2009, and Răut et al., 2021), like medicinal plants, so they do not produce plant damage. They are known as plant protectants against different biotic and abiotic stresses. These species improve the ability of plants to adapt to new habitats and to sustain the plant's performance and health via secretion of secondary metabolites. Among the secreted metabolites, gibberellins and hormones which are responsible for stimulating plant growth, especially in seed germination, stem elongation, and leaf expansion (Archard and Genschik, 2009). Due to their secondary beneficial metabolites, Cladosporium can be used in agroapplications, industrial discoloration of textile dyes and the keratin-containing degradation of wastes from the natural environment (Ademakinwa and Agboola, 2014; Nwadiaro *et al.*, 2015; Guan *et al.*, 2016, and Jakovlievic and Vrvic, 2018).

According to Amatuzzi et al. (2018), C. sphaerospermum, isolated from strawberry leaves, has also been used as a biocontrol agent against the moth, Duponchelia fovealis. Cladosporium spp. have the ability to degrade the cell wall of RKN eggs and juveniles. Also, they developed their potential to paralyze eggs and juveniles. In a previous study (Figure 5), Cladosporium suppressed egg hatch of M. javanica and increased mortality percent of second-stage juveniles as well.

Figure (5): The parasitism of *Cladosporium sphaerospermum* on *Meloidogyne javanica* juveniles (A) and eggs (B), (Taken by the Corresponding author).

Key features of *Cladosporium* as a biocontrol agent:

Mode of Action:

- Parasitism:
- Cladosporium can directly attack nematode eggs by colonizing their surfaces, penetrating the eggshells, and degrading them.
- Antagonistic activity: Produces secondary metabolites with nematotoxic effects that suppress nematode populations.
- Competition: Colonizes the rhizosphere and root surfaces, effectively competing with nematodes for space and nutrients.
- Induced Resistance: Some strains can stimulate plant defenses, enhancing the plant's ability to resist nematode infections.

Environmental and Crop Safety:

Cladosporium spp. are generally considered safe for the environment and non-toxic to plants and beneficial soil organisms. It is also compatible with other IPM practices and sustainable farming systems. Applying with other biocontrol agents (e.g., Trichoderma spp. or Pseudomonas fluorescens) often enhances efficacy.

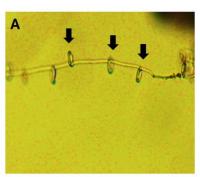
Potential advantages:

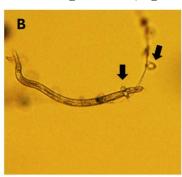
- Sustainability: Offers an eco-friendly alternative to chemical nematicides, reducing the risk of soil and water contamination.
- Ease of Cultivation: *Cladosporium* fungi can be mass-produced using agricultural residues,

making them cost-effective for largescale applications.

• Adaptability: Suitable for use in diverse agricultural systems, including field crops, horticulture, and greenhouses.

Limitations:


- Environmental
 Sensitivity: The effectiveness of Cladosporium may depend on soil conditions, temperature, and moisture levels.
- Field Performance: While laboratory results are promising, consistent efficacy under field conditions can vary.
- Product Availability: Few commercial products are currently available, as the use of *Cladosporium* for nematode control is still under development in many regions. Application methods:
- Soil Drench: Liquid formulations containing *Cladosporium* spores can be applied to the root zone.
- Seed Coating: Spores are used to coat seeds, allowing fungal colonization of roots as the plant grows.
- Compost or Organic Amendments: Incorporating Cladosporium-enriched compost into soil.


Drechslerella vs. Root-Knot nematodes:

Drechslerella species belong to the order Orbiliales, which includes a large

group of fungi. These fungi can produce devices for trapping to attack different animals. *Drechslerella*, which is known for forming constricting rings, has been isolated from nematode-infested roots or soil (Murga-Gutierrez et al., 2012). Besides, it was isolated from different soil types, decayed root galls of tomato, and leaf litter (Elshafie et al., 2006; Cho et al., 2008, and Singh et al., 2019). This genus evolved around 17 species that trap nematodes by producing constricting rings (Zhang and Hyde, 2014). The constricting ring consists of three cells as outlined by Yu et al. (2014). Drechslerella has been shown to effectively control RKNs both in vitro and in vivo (Singh et al., 2019). According to Hastuti et al. (2023), Drechslerella reduced M. hapla by 97.7% after 72 hrs. Moreover, constricting ring-forming fungus (Arthrobotrys dactyloides) attacked M. javanica J2s with more than 90% after 3 days (Galper et al., 1995).

Drechslerella successfully consumed RKN juveniles after 3 days (unpublished data). When juveniles of *M. javanica* moved through the constricting rings, nematodes stimulated constricting ring cells, which increased in size and closed on nematodes, preventing them from moving. Finally, the fungus consumes the nematode contents and grows (Figure 6).

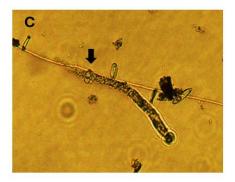


Figure (6): The constricting rings of *Drechslerella*. Where a) constricting rings of *D. brochopaga*, b) Root-Knot nematodes J2 attached to constricting ring, c) J2 after *D. brochopaga* consumed the nematode body content (Taken by the Corresponding author).

Key Features of *Drechslerella* in nematode control:

Mode of Action

Nematode Trapping: *Drechslerella* produces trapping structures, such as constricting rings, that physically capture nematodes. Once trapped, the fungus penetrates the nematode's cuticle, invades its body, and digests its contents.

Parasitism: The fungus directly parasitizes nematode juveniles, thereby significantly reducing their populations in the soil.

Secondary Metabolites: The fungus produces enzymes (e.g., proteases) and other compounds that degrade nematode cuticles and contribute to nematode mortality.

Target Nematodes

The fungus is highly effective against Root-Knot nematodes (*Meloidogyne* spp.). Also, targets other plant-parasitic nematodes, such as *Pratylenchus* (lesion nematodes) and *Heterodera* (cyst nematodes).

Plant Protection:

The fungus controls nematodes in the rhizosphere, protecting plant roots and reducing root galling. Promotes healthier root systems and indirectly improves plant growth and yield.

Advantages of Drechslerella:

- Eco-Friendly: Provides an environmentally sustainable alternative to chemical nematicides, with no harmful residues.
- Broad Adaptability: Functions across diverse soil types and agricultural systems.
- Synergy with IPM: The fungus is compatible with other biological control agents and practices, such as organic amendments and beneficial microorganisms.
- Durability: Once established in the soil, *Drechslerella* can persist and reproduce, providing long-term nematode control.

Limitations:

Environmental Sensitivity: Requires favorable soil conditions (moisture, organic matter) to thrive and produce trapping structures.

Field Efficacy: Laboratory and greenhouse studies have demonstrated effectiveness, but field performance can vary due to environmental factors.

Commercial Availability: Products based on *Drechslerella* are still under development, with limited commercial formulations currently available.

Application methods:

Soil Drench: Spores or fungal biomass can be applied to the soil, where the fungus colonizes and establishes a presence in the root zone.

Seed Treatment: Seeds coated with fungal spores allow early colonization of the rhizosphere.

Organic Matter Enrichment: Incorporating organic materials into the soil may enhance fungal growth and nematode-trapping activity.

Importance of biological control:

According to the biological control microorganisms definition. many products are and/or their used successfully for controlling pathogens. In this regard, many products composed of viruses, bacteria, yeasts, and fungi marketed and essential sustainable agriculture; nonetheless, their actual use remains constrained (Montesinos and Bonaterra, 2009). Cook and Baker (1983) contended that microbial products provide benefits, including a) the lack of residues, b) ecofriendliness, and c) low manufacturing costs, relative to chemical pesticides. Numerous biological control agents, as such Trichoderma. and Cladosporium, which stimulate plant growth and induce systemic acquired resistance, have been advocated for use as plant fertilizers.

One of the most notable benefits of biological control is its enduring

efficacy. This indicates that it might be a very economical pest management strategy, with advantages potentially surpassing the original project expenses by significant margins (Hoddle, 2004). A significant benefit of effective biological control is the reduction in the use of large quantities of pesticides, which are recognized as detrimental to non-target species, vertebrates, and people. Over 100 types of advantageous organisms are marketed for the management of significant pests and infections. Biocontrol agents provide benefits, particularly distinct scenarios where pests exhibit resistance to insecticides. Moreover, the primary benefit of using biological management is its potential to serve as the only remedy for the restoration ecosystems affected by invasive species (Blossey et al., 2001).

Limitations of using biological control

Biological control applications have disadvantages, such as the different efficiency influenced by many biotic and abiotic factors. Additionally, their specificity is at a high level against the target disease and pathogen, which may require the application of multiple microbial pesticides (Bonaterra et al., Biocontrol, including 2012). introduction of non-native species, may result in considerable ecological risks. These species may become invasive, disseminating beyond their introduction area and adversely impacting the ecosystem (Jennings et al., 2017). Furthermore, while biocontrol is often implemented on a limited scale, its viability on a broader scale is still questionable. Despite the genetic stability of biocontrol agents, their success has been limited, partly due to the effects of climate change. Certain biocontrol agents display predatory behavior only in nutrient-deficient conditions, rather than in normal environments. For example, Trichoderma species do not attack

Rhizoctonia solani in the presence of bark compost, since the availability of cellulose affects the activation of genes that encode chitinase, an enzyme involved in parasitic behavior (Pal and Gardener, 2006).

The suboptimal efficacy microbial pesticides is often ascribed to the failure of biocontrol agents to adequately colonize and last in the environment. where applied their fitness field diminishes under circumstances. This is particularly true for the phyllosphere and, to a lesser extent, the rhizosphere, both of which experience significant variations in environmental and phenological conditions. Additionally, these regions possess a robust native microbiota that is difficult for non-native microbes to supplant. **Improving** competitiveness of biocontrol agents in the plant environment is essential for augmenting their biocontrol efficacy, and many ways may be used to accomplish this (Bonaterra et al., 2012). Overcoming the biological control limitations:

effective strategy involves enhancing the nutritional environment for the biological control agents to boost their growth within the plant ecosystem and/or to inhibit the growth of competing microorganisms. This can include using specific chemicals alongside a biocontrol agent strain to suppress competing or antagonistic native microbes or adding nutrients to formulations that the biocontrol agent can utilize more effectively than the pathogen. Such approaches have been shown to improve the biocontrol survival, adaptability, agent's biocontrol effectiveness against various plant pathogens (Guetsky et al., 2002, and Druvefors et al., 2005). For example, the effectiveness of biocontrol fire blight infections Pseudomonas fluorescens 62e was enhanced by adding glycine and Tween

80, without impacting the infection potential of the bacterium Erwinia amylovora (Cabrefiga et al., 2011). Another approach involves modifying the physiology of the biological control agent to help it withstand challenging conditions after being applied in natural environments (Such as rhizosphere, or phyllosphere). Many microorganisms survive osmotic stress by a process called osmoadaptation, where they accumulate compatible solutes (Like sugars, glycosides, amino acids, and their derivatives) within their cells. This adaptation can be triggered by cultivating the microorganisms under suboptimal conditions, allowing them to endure drought, salinity, high temperatures, and freezing, thereby enhancing their ecological fitness (Csonka and Hanson, 1991; Miller and Wood, 1996; and Welsh and Herbert, 1999). Combining osmoadaptation with strategies like enhancement nutritional further strengthens the fitness of biocontrol agents on aerial plant surfaces. A method using both approaches has been developed to boost colonization and survival the phyllosphere in Rosaceous plants, thereby improving the fitness and effectiveness of the fire blight biocontrol agent, Pseudomonas fluorescens EPS62e (Cabrefiga et al., 2011).

Another approach to enhancing biological control involves combining antagonistic agents with different biocontrol mechanisms (Spadaro and Gullino, 2005, and Stockwell et al., 2011). When compatible strains are used together, they can achieve broader colonization of the plant surface and enhance key biocontrol traits, which improves pathogen suppression across a wider range of environmental conditions when applied than individually. For instance, combining two P. fluorescens strains improved the control of Phytophthora root rot in strawberries and reduced variability in treatment outcomes (Agustí *et al.*, 2011).

Enhancing biocontrol agents can also be achieved through genetic modification, which has the benefit of embedding sustainable traits in the biocontrol agent's progeny. Breedingbased approaches may be used to overexpress genes that produce existing metabolites, introduce new genes, or develop strains that generate higher levels of antimicrobial compounds, as well as manipulate the timing of their production (Walsh et al., 2001). Various genetic modifications have been applied to improve biocontrol in rhizosphere, including overproduction antimicrobial of compounds, as seen in T. harzianum and P. fluorescens CHAO (Flores et al., 1997, and Girlanda et al., 2001). The use of genetically engineered biocontrol agent strains is restricted by the European United (EU) regulations due potential environmental ecological risks. EU legislation sets stringent and comprehensive requirements for the environmental commercial release and genetically modified biological control including agents, extensive environmental impact assessments and risk analyses for both the biological control agent and its products. Although, these risks may be reduced carefully selecting genetic constructs, opting for chromosomal than plasmid-based insertions, and using delivery systems that limit translocation and dispersal (van Elsas and Migheli, 1999).

Conclusion

Root-Knot nematodes are causing more severe damage for most cultivated crops worldwide. The initial step for regulating *Meloidogyne* is identifying the pest accurately using conventional and molecular methods. Accurate identification is crucial for selecting

strategies. **Biological** management control nowadays is important as an alternative to chemical control. Many advantages and disadvantages have been reported for biological control. can assume that the we advantages of biocontrol overcome their cons. Trichoderma, Fusarium, Cladosporium, and Drechslerella are known bioagents against as Meloidogyne. The ability Trichoderma to trigger hormonemediated defense responses illustrates its potential for integrated disease management in agriculture. The ability of Cladosporium to degrade the extensive disulfide crosslinking of keratin polypeptides and solubilize the by secreting specialized enzymes can be used to obtain plant biostimulants and recommend Cladosporium as a fungal agent to promote plant growth. Drechslerella traps J2s of Meloidogyne and decreases their population densities in soil. On the other hand, Trichoderma and Fusarium successfully managed Meloidogyne by producing many metabolites and enzymes that degrade and toxic to nematodes.

Declaration of interest:

The authors declare there is no competing interest.

Data availability:

All available data has been published in the article. Figures (5 and 6) were captured and are available from the corresponding author upon reasonable request.

Funding:

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Ademakinwa, N.A. and Agboola, F.K. (2014): Production of Laccase by *Auerobasidium pullulans* and *Cladosporium werneckii* under optimized conditions: Applications

- in decolourization of textile dye. Res. Rev. J. Microbiol Biotechnol, 3: 32–40.
- Agustí, L.; Bonaterra, A.; Moragrega, C.; Camps, J. and Montesinos, E. (2011): Biocontrol of root rot of strawberry caused by *Phytophthora cactorum* with a combination of two *Pseudomonas fluorescens* strains. J. Plant Pathol., 93:363–372.
- Ahmed, S.M.M.; Mostafa, F.A.M., and Mazaty, M.A.A. (2010): Evaluation of five species of *Trichoderma* for the biocontrol of *Meloidogyne incognita* infecting sunflower, okra and cowpea .1. Seed dressing application. Egypt. J. Agronematol., 9(2):157-171.
- Al-Hazmi, A. S.; Al-Yahya, F. A. and Abdul-Razig, A.T. (1995): Occurrence, distribution and plant associations of plant nematodes in Saudi Arabia. Research Bulletin No. 52, Agricultural Research Center, College of Agriculture, King Saud University Pp.45.
- Al-Hazmi, A.S. and Javeed, M.T. (2015): Effects of different inoculum densities of *Trichoderma harzianum* and *Trichoderma viride* against *Meloidogyne javanica* on tomato. Saudi Journal of Biological Sciences, 23: 288- 292. http://dx.doi.org/10.1016/j.sjbs.201 5.04.007
- Al-Hazmi, A.S.; Al-Yahya, F.A.; AbdelRafaa, O.A., and Lafi, H.A. (2019): Effect of humic acid, Trichoderma harzianum, and Paecilomyces lilacinus on Meloidogyne javanica. International Journal of Agriculture, Environment and Bioresearch, 4: 61-74.
- Al-Hazmi, ASA.S.; Dawabah, A.A.M.; Al-Yahya, F.A., and Al-Nadary, S.N. (2009): Plant parasitic nematodes associated with coffee, a newly introduced crop to South

- WestSouthwest Saudi Arabia. Pak. J. Nematol., 27 (2): 401-407.
- Ali, S.S. and Sharma, S.B. (2003): Nematode survey of chickpea production areas in Rajasthan, India. Nematol. Medit., 31:147–149.
- Almohithef, A.H.; Al-Yahya, F.A.; Al-Hazmi, A.S.; Dawabah, A.A.M. and Lafi, H.A. (2018): Prevalence of plant-parasitic nematodes associated with certain greenhouse vegetable crops in Riyadh region, Saudi Arabia. Journal of the Saudi Society of Agricultural Sciences. https:
 - //doi.org/10.1016/j.jssas.2018.05.00
- Amatuzzi, R.F.; Cardoso, N.; Poltronieri, A.S.; Poitevin, C.G.; Dalzoto, P.; Zawadeneak, M.A. and Pimentel, I.C. (2018): Potential of endophytic fungi as biocontrol agents of *Duponchelia fovealis* (Zeller) (Lepidoptera: Crambidae). Brazilian Journal of Biology, 78: 429-435.
 - http://dx.doi.org/10.1590/1519-6984.166681
- Archard, P. and Genschik, P. (2009):
 Releasing the brakes of plant growth: How GAs shutdown DELLA proteins. J. Exp. Bot., 60:1085–1092.
- Bale, J.S.; van Lenteren, J.C. and Bigler, F. (2008): Biological control and sustainable food production. Philos. Trans. R. Soc. Lond. B Biol. Sci., 363: 761–776. doi:10.1098/rstb.2007.2182
- Barron, G.L. (1977): The nematode-destroying fungi 1st ED., Guelph-Ontario, Canada. Canadian Biological Publications Ltd. Pp 140. https://doi.org/10.1002/jobm.19790 190412
- Batta, Y.A. (2004): Effect of treatment with *Trichoderma harzianum* Rifai formulated in invert emulsion on postharvest decay of apple blue mold. International Journal of Food

- Microbiology, 96(3): 281-288. https://doi.org/10.1016/j.ijfoodmicr o.2004.04.002
- Bekker, S.; Fourie, H.; Rashidi, M.; Daneel, M.; Shokoohi, E. and Nel, A. (2016): Discriminating between the eggs of two egg-mass-producing nematode genera using morphometric and molecular techniques. Nematology, 18(9): 1119-1123. doi:10.1163/156 85411-00003022.
- Berkeley, M.J. (1855): Vibrio forming cysts on the roots of cucumbers. Gardener's Chronicle and Agricultural Gazette, 14: 220.
- Blok, V.C. (2005): Achievements in and future prospects for molecular diagnostics of plant-parasitic nematodes. Canadian Journal of Plant Pathology, 27(2): 176-185. https://doi.org/10.1080/07060660509507214
- Blok, V.C. and Powers, T.O. (2009):
 Biochemical and molecular identification. In: Perry, R.N.;
 Moens, M. and Starr, J.L. (Eds.),
 Root-Knot nematodes (pp. 98-118).
 Wallingford: CAB International.
 https://doi.org/10.1079/9781845934
 927.0098
- Blok, V.C.; Wishart, J.; Fargette, M.; Berthier, K. and Phillips, M.S. (2002): Mitochondrial DNA differences distinguishing Meloidogyne mayaguensis from the major species of tropical Root-Knot nematodes. Nematology, 4(7): 773-781. doi10.1163/156854102760402 559
- Blossey, B.; Skinner, L.C. and Taylor, J. (2001): Impact and management of purple loosestrife (*Lythrum salicaria*) in North America. Biodiversity Conserv., 10:1787–1807.
- Bonaterra, A.; Badosa, E.; Cabrefiga, J.; Frances, J. and Montesinos, E. (2012): Prospects and limitations of microbial

- pesticides for control of bacterial and fungal pome fruit tree diseases. Trees, 26: 215- 226. doi 10.1007/s00468-011-0626-y
- Cabrefiga, J.; Bonaterra, A. and Montesinos, E. (2007): Mechanisms of antagonism of *Pseudomonas fluorescens* EPS62e against *Erwinia amylovora*, the causal agent of fire blight. International Microbiology, 10(2): 123.
 - http://hdl.handle.net/10256/7763
- Cabrefiga. J.: Francés, J.; Montesinos, E. and Bonaterra, A. (2011): Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation. Appl. Environ. Microbiol., 77: 3174–3181. https://doi.org/10.1128/ AEM. 02760-10
- Cai, F.; Yu, G.; Wang, P.; Wei, Z.; Fu, L.; Shen, Q. and Chen, W. (2013): Harzianolide, a novel plant growth regulator and systemic resistance elicitor from *Trichoderma harzianum*. Plant Physiol. Biochem., 73:106-113. https://doi.org/10.1016/j.plaphy.201
 - https://doi.org/10.1016/j.plaphy.201 3.08.011
- Chen, Q.; Brown, D.J.F.; Curtis, R.H. and Jones, J.T. (2003): Development of a magnetic capture system for recovery of *Xiphinema americanum*. Annals of Applied Biology, 143(3): 283-289. doi: 10.1111/j.1744-7348. 2003.tb00296.x
- Chen, Q.; Robertson, L.; Jones, J.T.; Blok, V.C.; Phillips, M.S., and Brown, D.J.F. (2001): Capture of nematodes using antiserum and lectin-coated magnetized beads. Nematology, 3(6): 593-601. doi: 10.1163/156854101753389202
- Chen, S. and Dickson, D.W. (2004): Biological control of nematodes by fungal antagonists. In: Chen, Z.X.; Chen, S.Y. and Dickson, D.W. (eds)

- Nematology-Advances and Perspectives Vol2 Nematode Management and Utilization. CABI CABI, Wallingford, UK, Pp. 979-1039.
- Chitwood, B.G. (1949): Root-Knot nematodes, part I. A revision of the genus *Meloidogyne* Goeldi, 1887. Proceedings of the Helminthological Society of Washington, 16(2): 90-104.
- Cho, C.H.; Kang, D.S.; Kim, Y.J. and Whang, K.S. (2008): Morphological and phylogenetic characteristics of a nematophagous fungus, *Drechslerella brochopaga* Kan-23. Korean Journal of Microbiology, 44: 63- 68.
- Ciancio, A. (1995): Observations on the nematicidal properties of some mycotoxins. Fundam. Appl. Nematol., 18:451–454.
- Cook, R.J. and Baker, K.F. (1983):

 The nature and practice of biological control of plant pathogens.

 American Phytopathological Society, Minnesota, USA.
- Coppola, M.; Diretto, G.; Digilio, M.C.; Woo, S.L.; Giuliano, G.; Molisso, D. and Rao, R. (2019): Transcriptome and metabolome reprogramming in tomato plants by Trichoderma harzianum strain T22 defense primes and enhances responses against aphids. Frontiers Physiology, 10: 745. https://doi.org/10.3389/fphys.2019. 00745
- Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N. and Talwana, H. (2018): Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu. Rev. Phytopathol., 56:381-403. doi: 10.1146/annurev-phyto-080417-045833
- Csonka, L.N. and Hanson, A.D. (1991): Prokaryotic osmoregulation: genetics and physiology. Annu. Rev.

- Microbiol., 45:569–606. https://doi.org/10.1146/annurev.mi. 45.100191.00303 3
- Cunha, T.G.; Visotto, L.E.; Lopes, E.A.; Oliveira, C.M.G. and God, P.I.V.G. (2018): Diagnostic methods for identification of Root-Knot nematodes species from Brazil. Ciência Rural, Santa Maria, 48: 02. http://dx.doi.org/10.1590/0103-8478cr2017044
- J.; Baillie, D.L. Curran, and Webster, J.M. (1985): Use of genomic DNA restriction fragment differences identify length to nematode species. Parasitology, 90(1): 137-144. doi:10.101 7/S0031182000049088
- **Dababat, A.A. and Sikora, R.A.** (2007): Influence of the mutualistic endophyte *Fusarium oxysporum* 162 on *Meloidogyne incognita* attraction and invasion. Nematology, 9(6): 771-776. https://doi.org/10.1163/1568541077 82331225
- De Ley, I.; Karssen, G.; De Ley, P.; Vierstraete, A.; Waeyenberge, L.; Moens, M. and Vanfleteren, J. (1999): Phylogenetic analyses of internal transcribed spacer region sequences within *Meloidogyne*. Journal of Nematology, 31(4): 530-531.
- Devran, Z. and Söğut, M. (2009):
 Distribution and identification of
 Root-Knot nematodes from Turkey.
 Journal of Nematology, 41(2): 128–
 133. PMCID: PMC3365313
 PMID: 22661785
- Druvefors, U. A.; Passoth, A. and Schnurer, J. (2005): Nutrient effects on biocontrol of *Penicillium roqueforti* by Pichia anomala J121 during airtight storage of wheat. Appl. Environ. Microbiol., 71:1865–1869. doi: 10.1128/AEM.71.4.1865-1869.2005
- Eisenback, J.D. and Hunt, D.J. (2009): General morphology. In:

- Perry, R.N.; Moens, M. and Starr, J.L. (Eds.), Root-Knot nematodes (pp. 18-54). Wallingford: CAB International. https://doi.org/10.1079/9781845934927.0 018
- Eisenback, J.D.; Hirschmann, H.; Sasser, J.N. and Triantaphyllou, A.C. (1981): A guide to the four most common species of Root-Knot nematodes (*Meloidogyne* spp.), with a pictorial key 1st ED., The United States Agency for International Development, Raleigh, North Carolina.
- Elling, A.A. (2013): Major emerging problems with minor *Meloidogyne* species. Phytopathology, 103: 1092-1102. http://dx.doi.org/10.1094/PHYTO-

01-13-0019-RVW

- El-Qurashi, M. A.; Al-Yahya, F.A.; Al-Hazmi, A.S., and Saleh, A.A. (2023): Efficacy of biologically synthesized nanoparticles on suppression plant-parasitic nematodes: a review. Egyptian J. Agronematology, 22(2): 41-60. doi: 10.21608/ejaj.2023.323776
- El-Qurashi, M.A. and Al-Yahya, F. (2025): A comprehensive review of biological agents against plant-parasitic nematodes. Egyptian J. Phytopathol., 53(2): 51- 72. doi: 10.21608/EJP.20 25.399978.1147
- El-Qurashi, M.A.; Al-Yahya, F.; Almasrahi, A., and Shakeel, A. (2025): Growth and resistance response of eleven eggplant cultivars to infection by the javanese Root-Knot nematode *Meloidogyne javanica* under greenhouse conditions. Plant Protect. Sci., 61(3):291-300. doi:10.17221/185/2024-PPS.
- El-Qurashi, M.A.; El-Zawahry, A.M.I.; Abd-El-Moneem, K.M.H. and Hassan, M.I. (2017): Morphological and molecular identification of Root-Knot

- nematodes infecting pomegranate in Assiut Governorate, Egypt. Journal of Phytopathology and Pest Management, 4: 30-37. https://ppmj.net/index.php/ppmj/arti cle/view/111
- El-Ourashi, **M.A.**; El-Zawahrv, A.M.I.; Abd-El-Moneem, K.M.H. and Hassan, **M.I**. (2019): Occurrence, population density and biological control of Root-Knot nematode, Meloidogyne javanica infecting pomegranate orchards in Assiut Governorate, Egypt. Assiut J. Agri. Sci.. 50: 176-189. https://doi.10.21608/ajas.2019.4181
- Elshafie, A.E.; Al-Mueini, R.; Al-Bahry, S.N.; Akindi, A.Y.; Mahmoud, I. and Al-Rawahi, S.H. (2006): Diversity and trapping efficiency of nematophagous fungi from Oman. Phytopathologia Mediterranea, 45: 266- 270. http://www.jstor.org/stable/2646326 3
- Elshire, R. J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S. and Mitchell, S.E. (2011): A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One, 6(5): e19379. doi: 10.1371/journal.pone.0019379.
- Esbenshade, P.R. and Triantaphyllou, A.C. (1985): Use of enzyme phenotypes for identification of *Meloidogyne* species (Nematoda: Tylenchida). Journal of Nematology, 17(1): 6-20.
- Evans, H.C.; Holmes, K.A. and Thomas, S.E. (2003): Endophytes and mycoparasites associated with an indigenous forest tree, *Theobroma gileri*, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Progress, 2: 149–160. https:

- //doi.org/10.1007/s11557-006-0053-
- Flores, A.; Chet, I. and Herrera-Estrella, A. (1997): Improved biocontrol activity of *Trichoderma harzianum* by over-expression of the proteinase-encoding gene prb1. Curr. Genet., 31:30–37. doi: 10.1007/s002940050173
- Galper, S.; Eden, L.M.; Stirling, G.R. and Smith, L.J. (1995): Simple methods of assessing the predactious activity of nematode-trapping fungi. Nematologica, 41: 130- 140. https://doi.org/10.1163/003925995X00107
- Ghabrial, S.A. and Suzuki, N. (2009):
 Viruses of plant pathogenic fungi.
 Annual Review of Phytopathology,
 47(1):
 353-384.
 https://doi.org/10.1146/annurevphyto-080508-081932
- Girlanda, M.; Perotto, S.; Moenne-Loccoz, Y.; Bergero, R.; Lazzari, A.; Defago, G.; Bonfante, P. and Luppi, A.M. (2001): Impact of biocontrol Pseudomonas fluorescens CHAO and a genetically modified derivative on the diversity culturable fungi in the cucumber rhizosphere. Environ. Appl. Microbiol., 67:1851-1864. doi: 10.1128/ AEM.67. 4.1851-1864.2001
- Göldi, E.A. (1887): Relatorio sobre a molestia do cafeeiro na provincia do Rio de Janeiro. Rio de Janeiro: Imprensa Nacional.
- Goswami, J.; Pandey, **R.K.**; Tewariand, J.P. and Goswami, B.K. (2008): Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. Environ. J., 43: 237-240. Sci. Health doi:10.1080/0360123 0701771164
- Guan, G.Q.; Zhao, P.X.; Zhao, J.; Wang, M.J.; Huo, S.H.; Cui, F.J. and Jiang, J.X. (2016): Production

- and Partial Characterization of an Alkaline Xylanase from a Novel Fungus *Cladosporium oxysporum*. Hindawi Publishing Corporation. BioMed Res. Int. 4575024.
- Guetsky, R.; Elad, Y.; Shtienberg, D. and Dinoor, A. (2002): Improved biocontrol of *Botrytis cinerea* on detached strawberry leaves by adding nutritional supplements to a mixture of *Pichia guilermondii* and *Bacillus mycoides*. Biocontrol Science and Technology, 12: 625–630.
 - doi:10.1080/0958315021000016289
- Hamayun, M.; Ahmad, N.; Tang, D.S.; Kang, S.M.; Na, C.I.; Sohn, E.Y.; Hwang, Y.H.; Shin, D.H. and Lee, I.J. (2009): Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol., 25: 627–632. Doi: 10.1007/s11274-009-9982-9
- Hao, L.; Zhao, F.; Guo, Y.; Ma, Y.; Li, Z.; Wang, W. and Wang, R. (2025): Antagonistic activity of Pochonia chlamydosporia against helminth three eggs and characterization of its serine protease. Veterinary Parasitology 334: 110374. https://doi.org/10.1016/j.vetpar.202 4. 110374
- Harman, G.E. (2006): Overview of Mechanisms and Uses of *Trichoderma* spp. Phytopathology, 96(2): 190-194. https://doi.org/10.1094/PHYTO-96-0190
- Hastuti, L.D.; Sari, R.W.; Fauzi, F.; Naibaho, D.C.; Purba, R.T. and Putri, Q.A. (2023): Nematophagous fungi isolated from municipal wastcontaminated soil in Medan city, Sumatera: morphological north identification, phylogeny analysis assessment as Root-Knot and nematodes biocontrol. Yuzuncu

- Yil University. Journal of Agricultural Sciences, 33. https://doi.org/10.29133/yyutbd.1230261
- Hoddle, M.S. (2004): Restoring balance: using exotic species to control invasive exotic species. Conserv. Biol., 18: 38–49.
- Howell, R.; Hanson, E.L.; Stipanovic, R.D. and Puckhaber, L.S. (2000): Induction of terpenoid synthesis in cotton roots and control of *Rhizoctonia solani* by seed treatment with *Trichoderma virens*. Phytopathology, 90: 248–252.
- Hu, M.X.; Zhuo, K. and Liao, J.L. (2011): Multiplex PCR for the simultaneous identification and detection of *Meloidogyne incognita*, *M. enterolobii*, and *M. javanica* using DNA extracted directly from individual galls. Phytopathology, 101(11):1270-1277. doi:10.1094/PHYTO-04-11-0095. PMID: 21770774
- Hunt, D.J. and Handoo, Z.A. (2009):
 Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (Eds.), Root-Knot nematodes. CAB International, Wallingford, pp 55- 97. https://doi.org/10.1079/9781845934 927.005
- Hunt, D.J.; Palomares-Rius, J.E. and Manzanilla-Lopez, R.H. (2018): Identification, morphology and biology of plant parasitic nematodes. In: Sikora, R.A.; Coyne, Hallmann, J. and Timper, P. (eds) Plant Parasitic Nematodes Subtropical and **Tropical** Agriculture. CABI, Wallingford, UK, Pp. 20-61.
- Hussey, R.S. and Janssen, G.J.W. (2002): Root-Knot nematodes: *Meloidogyne* species. In: Starr, J.L.; Cook, R. and Bridge, J. (eds.) Plant Resistance to Parasitic Nematodes. CABI Wallingford, UK, Pp. 43-70.

- https://doi.org/10.1079/9780851994 666.0043
- Ishimaru, C.A.; Klos, E.J. and Brubaker, R.R. (1988): Multiple antibiotic production by *Erwinia herbicola*. Phytopathology, 78(6): 746-750.
- Jakovljevic, V.D. and Vrvic, M.M. (2018): Potential of pure and mixed cultures of *Cladosporium cladosporioides* and *Geotrichum candidum* for application in bioremediation and detergent industry. Saudi J. Biolol. Sci., 25: 529–536.
- Janisiewicz, W.J. and Roitman, J. (1988): Biological control of blue mold and gray mold on apple and pear with *Pseudomonas cepacia*. Phytopathology, 78(12): 1697-1700.
- Janssen, T.; Karssen, G.; Verhaeven, M.; Coyne, D. and Bert, W. (2016): Mitochondrial coding genome analysis of tropical Root-Knot nematodes (*Meloidogyne*) supports haplotype-based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports, 6: 1-13. doi:10.1038/srep22591
- Jarquín, D.; Kocak, K.; Posadas, L.; Hyma, K.; Jedlicka, J., Graef, G. and Lorenz, A. (2014): Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics, 15: 740. doi:10.1186/1471-2164-15-740
- Javeed, M.T. and Al-Hazmi, A.S. (2015): Effect of *Trichoderma harzianum* on *Meloidogyne javanica* in tomatoes as influenced by time of the fungus introduction into soil. Journal of Pure and Applied Microbiology, 9: 535-539.
- Javeed, M.T.; Al-Hazmi, A.S. and Molan, Y.Y. (2016): Antagonistic effects of some indigenous isolates of *Trichoderma* spp. against *Meloidogyne javanica*. Pakistan Journal of Nematology, 34 (2): 183-

- 191. http://dx.doi.org/10.18681/pjn.v34.i 02.p183
- Jennings, D.E.; Duan, J.J. and Follett, P.A. (2017): Environmental impacts of arthropod biological control: an ecological perspective. In: Coll, M. and Wajnberg, E. (eds) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Chichester, p 105.
 - https://doi.org/10.1002/9781119255 574.ch5
- Jones, J.B.; Jackson, L.E.; Balogh, B.; Obradovic, A.; Iriarte, F.B. and Momol, M.T. (2007): Bacteriophages for plant disease control. Annu. Rev. Phytopathol., 45(1): 245- 262. https://doi.org/10.1146/annurev.phyto.45. 062806.094411.
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M. and Perry, R.N. (2013): Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol., 14(9): 946- 61. DOI: 10.1111/mpp.12057
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K. and Kumar, P. (2020): Systemic acquired resistance (SAR) induced systemic resistance (ISR): Role and mechanism of action phytopathogens. against Biotechnology and Bioengineering, 457-470. //doi.org/10.1007/978-3-030-41870-0 20
- Karssen, G. and Moens, M. (2006): Root-Knot nematodes. In: Perry, R.N. and Moens, M. (Eds.), Plant Nematology, pp. 59-90. CABI. https://doi.org/10.1079/9781845930 561.0059

- Khan, A.; Williams, K.; Molloy, M.P. and Nevalainen, H. (2003): Purification and characterization of a serine protease and chitinases from *Paecilomyces lilacinus* and detection of chitinase activity on 2D gels. Protein Expression and Purification, 32: 210-220. https://doi.org/101016/j.pep.2003.0 7.007
- Khan, R.A.A.; Najeeb, S.; Mao, Z.; Ling, J.; Yang, Y.; Li, Y. and Xie, B. (2020): Bioactive secondary metabolites from *Trichoderma* spp. against phytopathogenic bacteria and Root-Knot nematode. Microorg, 8:

 401. https://doi.10.3390/microorganisms 8030401
- **Kumar, V.; Khan, M.R. and Walia, R.K. (2020):** Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl. Acad. Sci. Lett., 43(5): 409–412. https://doi.org/10.1007/s40009-020-00895-2
- Landa, B.B.; Rius, J.E.P.; Vovlas, N.; Carneiro, R.M.D.G.; Maleita, C.M.N.; de O Abrantes, I.M. and Castillo, P. (2008): Molecular characterization of Meloidogyne hispanica (Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in Meloidogyne spp. Plant Disease, 92(7): 1104-1110. doi: 10.1094/PDIS-92-7-1104
- Lima, F.S.O.; Correa, V.R.; Nogueira, S.R. and Santos, P.R.R. (2017): Nematodes affecting soybean and sustainable practices for their management. In: Kasai M (eds) Soybean-the Basis of Yield, Biomass and Productivity. In Tech. http://dx.doi.org/10.5772/67030
- Mani, A.; Sethi, C.L. and Devkumar (1986): Isolation and identification of nematoxins produced by *Fusarium solani* (Mart) Sacc. Indian J. Nematol., 16: 247–251.

- McSorley, R.; Arnett, J.D.; Bost, S.C.; Carter, W.W.; Hafez, S.; Johnson, A.W.; Kirkpatrick, T.; Nyczepir, A.P.; Radewald, J.D.; Robinson, A.F. and Schmitt, D.P. (1987): Bibliography of estimated crop losses in the United State due to plant-parasitic nematodes. Annals of Applied Nematology, 1: 6-12.
- Miller, K.J. and Wood, J.M. (1996): Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol., 50: 101-136.
 - https://doi.org/10.1146/annurev.mic ro.50.1.101
- Mimee, **B**.: Duceppe, **M.O.**; Véronneau, **P.Y.**; Lafond-Lapalme, J.; Jean, M.; Belzile, F. Bélair, G. (2015): A new method for studying population genetics of cyst nematodes based on Pool-Seq and genomewide allele frequency analysis. Molecular Ecology Resources, 15(6): 1356-1365. doi:10.1111/1755-0998.12412
- Moens, M.; Perry, R.N. and Starr, J.L. (2009): *Meloidogyne* species a diverse group of novel and important plant parasites. In: Perry, R.N.; Moens, M. and Starr, J.L. (Eds.) Root-Knot nematodes. CAB International, Wallingford, pp. 1-17. https://doi.org/10.1079/978184593 4927.0001
- Mohamed, M.M.M.; Al-Yahya, F.; Yassin, M.; El-Qurashi, M.; Gboyega, Y. and Yousif, H. (2023): Plant nematodes associated with crop plants in Jazan Region, southwest of Saudi Arabia. Journal of Agricultural & Marine Sciences (JAMS), 28 (2): 89-89.
- Mokbel, A.A. (2014): Nematodes and their associated host plants cultivated in Jazan province, Southwest Saudi Arabia. Egypt. J. Exp. Biol. (Zool.), 10 (1): 35-39.
- Molina, L.; Constantinescu, F.; Michel, L.; Reimmann, C.; Duffy, B. and Défago, G. (2003):

- Degradation of pathogen quorumsensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiology Ecology, 45(1): 71-81. https://doi.org/10.1016/S0168-6496(03)00125-9
- Montesinos, E. and Bonaterra, A. (2009): Microbial pesticides. In: Schaechter M (ed), Encyclopedia of Microbiology, 3rd Edition, Elsevier, Amsterdam, 110-120. http://dx.doi.org/10.1016/b978-012373944-5.00125-5
- Mukherjee, A.; Ghosh, A.; Chatterjee, C.; Mitra, A. and Mandal, F.B. (2011): Diversity nematodes inhibiting some major crop plants of India with a note on their biocontrol. J. Environ. Sociobiol., 8(1): 103-107.
- Murga-Gutierrez, S. N.; Colagiero, M.; Rosso, L.C.; Finetti Sialer, M.M. and Ciancio, A. (2012): Root-Knot nematodes from asparagus and associated biological antagonists in Peru. Nematropica, 42: 57- 62.
- Nega, A. (2014): Review on Nematode Molecular Diagnostics: From Bands to Barcodes. Journal of Biology, Agriculture and Healthcare, 4(27): 129-153.
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.; Hockland, S. and Maafi, Z.T. (2011): Current Nematode Threats to World Jones, Agriculture. In: J.: Gheysenm, G. and Fenoll, C. (eds) Genomics and Molecular Genetics Plant-Nematode Interactions. Springer, Dordrecht, Pp. 21- 43. https://doi.org/10.1007/978-94-007-0434-3 2
- Nitao, J.K.; Meyer, S.L.F.; Schmidt, W.F.; Fettinger, J.C. and Chitwood, D.J. (2001): Nematode-antagonistic trichothecenes from *Fusarium equiseti*. Journal of Chemical Ecology, 27: 859-869.

- Nwadiaro, P.; Ogbonna, A.; Ponchang, W. and Adekojo, D. (2015): Keratinolytic activity of Cladosporium and Trichoderma species isolated from barbers' landfill. Int. J. Biosci., 6: 104–115.
- Ongena, M.; Jacques, P.; Touré, Y.; Destain, J.; Jabrane, A. and Thonart, P. (2005): Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of *Bacillus subtilis*. Applied Microbiology and Biotechnology, 69: 29-38. https://doi.org/10.1007/s00253-005-1940-3
- Onkendi, E.M.; Kariuki, G.M.; Marais, M. and Moleleki, L.N. (2014): The threat of Root-Knot nematodes (*Meloidogyne* spp.) in Africa: a review. Plant Pathology, 63(4): 727- 737. http://hdl.handle.net/2263/41425
- Onkendi, M. and Moleleki, L.N. (2013a): Distribution and genetic diversity of root-knot nematodes (*Meloidogyne* spp.) in potatoes from South Africa. Plant Pathology, 62(5): 118 4-1192. https://doi.org/10.1111/ppa.12035
- Onkendi, M. and Moleleki, L.N. (2013b): Detection of *Meloidogyne* enterolobii in potatoes in South Africa and phylogenetic analysis based on intergenic region and the mitochondrial DNA sequences. European Journal of Plant Pathology, 136(1): 1-5. http://hdl.handle.net/2 263/39617
- Pal, K.K. and Gardener, B.M. (2006): Biological control of plant pathogens. Plant Health Instruct., 2: 1117— 1142. doi:10.1094/PHI-A-2006-1117-0
- Park, H.G.; Managbanag, J.R.; Stamenova, E.K. and Jong, S.C. (2004): Comparative analysis of common indoor *Cladosporium* species based on molecular data and conidial characters. Mycotaxon, 89 (2): 441- 451.

- https://www.cabidigitallibrary.org/doi/full/10.5555/200431 25893
- Peiris, P.U.S.; Li, Y.; Brown, P. and Xu, C. (2020): Fungal biocontrol against *Meloidogyne* spp. in agricultural crops: A systematic review and meta-analysis. Biological Control, 144: 104235. https://doi.org/10.1016/j.biocontrol. 2020.104235
- Pereira, P.T.; de Carvalho, M.M.; Gírio, F.M.; Roseiro, J.C. and Amaral-Collaço, M.T. (2002): Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. Journal of Basic Microbiology, 42 (6): 396-407. https://doi.org/10.1002/1521-4028(200212)42:6<396::AID-JOBM396>3.0.CO;2-L
- Powers, T.O. and Harris, T.S. (1993):
 A polymerase chain reaction method for identification of five major *Meloidogyne* species. Journal of Nematology, 25(1): 1-6. PMCID: PMC2619349PMID: 19279734
- Powers, T.O.; Mullin, P.G; Harris, T.S.; Sutton, L.A. and Higgins, R.S. (2005): Incorporating molecular identification of *Meloidogyne* spp. into a large-scale regional nematode survey. Journal of Nematology, 37(2): 226-235. PMCID:
 - PMC2620951 PMID: 19262865
- Quintanilla, M. and Fazlabadi, R.Y. (2023): Methods of sustainable management of plant nematodes, limitation, and challenges for crop In: Khan, M.R. and growers. Ouintanilla, M. (eds) Nematode Diseases of Crops and Sustainable Management. Elsevier, London, UK, Pp. 55-63. https://doi.org/10.1016/B978-0-323-91226-6.00028-6
- Qureshi, S.A.; Ruqqia, S.V.; Ara, J. and Ehteshamul-Haque, S. (2012): Nematicidal potential of culture filtrates of soil fungi associated with

- rhizosphere and rhizoplane of cultivated and wild plants. Pak. J. Bot., 44: 1041-1046.
- Rashidifard. **M.:** Fourie, H.: Véronneau, P.V.; Marais, M.; Daneel, M.S. and Mimee, B. (2018): Genetic diversity and phylogeny of South African Meloidogyne populations using genotyping by sequencing. Scientific Reports, 8: 13816. https://doi.org/10.1038/s41598-018-31963-9
- Răut, I.; Călin, M.; Capră, L.; Gurban, A.; Doni, M.; Radu, N. and Jecu, L. (2021): Cladosporium sp. isolate as fungal plant growth promoting agent. Agronomy, 11 (2): 392.
 - https://doi.org/10.3390/agronomy11 020392
- Sahebani, N. and Hadavi, N. (2008):
 Biological control of the Root-Knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem., 40: 2016-2020. https://doi.org /1 0.1016/j.soilbio.2008.03.011
- Sasser, J. N. and Freckman, D. (1987): A world perspective on nematology: The role of the society. In J. A. Veech and D. W. Dickson, eds. Vistas on nematology, Hyattsville, Maryland, 7-20.
- Sasser, J.N. (1980): Root-Knot nematodes a global menace to crop production. Plant Disease, 64: 36-41.
- Seesao, Y.; Gay, M.; Merlin, S.; Viscogliosi, E.; Aliouat-Denis, C.M. and Audebert, C. (2017): A review of methods for nematode identification. Journal of Microbiological Methods, 138: 37–49.
 - https://doi.org/10.1016/j.mimet.201 6.05.030
- Segarra, G.; Casanova, E.; Bellido, D.; Odena, M.A.; Oliveira, E. and Trillas, I. (2007): Proteome,

- salicylic acid, and jasmonic acid changes in cucumber plants inoculated with *Trichoderma asperellum* strain T34. Proteomics and Systems Biology, 7: 3943-3952. https://doi.org/10.1002/pmic.20070 0173
- Sharma, R.R.; Singh, D. and Singh, R. (2009): Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3): 205-221.
 - https://doi.org/10.1016/j.biocontrol. 2009.05.001
- Sharon, E.; Bar-Eyal, M.; Chet, I.; Herrera-Estrella, A.; Kleifeld, O. and Spiegel, Y. (2001): Biological control of the Root-Knot nematode *Meloidogyne javanica* by *Trichoderma harzianum*. Phytopathology, 91: 687–693. doi: 10.1094/PHYTO.2001.91.7.687
- Sidhu, R.K.; Sharma, S. and Parshad, V.R. (2014): Scanning electron microscopy of parasitic association of soil fungus *Trichoderma* sp. with Root-Knot nematode *Meloidogyne incognita*. Afr. J. Microbiol. Res., 8 (45): 3770-3774. https://doi.org/10.5897/AJMR 2013.6538
- Sikandar, A.; Zhang, M.Y.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.Y.; Xuan, Y.H.; Chen, L.J. and Duan, Y.X. (2020): Review article: *Meloidogyne* incognita (Root-Knot nematode) a risk to agriculture. Appl. Ecol. Environ. Res., 18: 1679–1690. http://dx.doi.org/10.15666/aeer/1801_16791690
- Singh, U.B.; Singh, S.; Khan, W.; Sahu, Malviya, D.; **P.K.**; Chaurasia, R.; Sharma, S.K. and Saxena, A.K. (2019): Drechslerella dactyloides and Dactvlaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. India

- Phytopathology, 72: 309-320. https://doi.org/10.1007/ s42360-019-00132-x
- Smits, T.H.; Rezzonico, F.; Kamber, T.; Goesmann, A.; Ishimaru, C.A.; Stockwell, V.O.; Frey, J.E. and Duffy, B. (2010): Genome sequence of the biocontrol agent *Pantoea vagans* strain C9-1. Journal of Bacteriology, 192(24): 6486- 6487. https://doi.org/10.1128/jb.01 1 22-10
- Spadaro, D., and Gullino, M.L. (2004): State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2): 185-194. https://doi.org/10.1016/S0168-1605(03)00380-5
- **Spadaro, D., and Gullino, M.L.** (2005): Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot., 24: 601–613. https://doi.org/10.1016/j.cropro.200 4. 11.003
- Stockwell, V.O.; Johnson, K.B.; Sugar, D. and Loper, J.E. (2011): Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology, 101: 113–123. doi: 10.1094/PHYTO-03-10-0098
- Sweeney, M.J. and Dobson, D.W. (1998): Mycotoxin production by *Aspergillus*, *Fusarium* and *Penicillium* species. Int. J. Food Microbiol., 43: 141–158.
- Takaya, N.; Yamazaki, D.; Horiuchi, H.; Ohta, A. and Takagi, M. (1998): Cloning and characterization of a chitinase-encoding gene (chiA) from *Aspergillus nidulans*, disruption of which decreases germination frequency and hyphal growth. Bioscience, Biotechnology, and Biochemistry, 62: 60–65, https://doi.org/10.1271/bbb.62.60

- Tasic, S. and Tasic, N.M. (2007): Cladosporium spp. cause of opportunistic mycoses. Acta. Fac. Med. Naiss., 24(1): 15-19.
- M.; De Siqueira, Tigano, Castagnone-Sereno, P.; Mulet, K.; Queiroz, P.; Dos Santos, M.; Teixeira, .C; Ahmeida, M.; Silva, J. and Carneiro, R. (2010): Genetic diversity of the root-knot nematode Meloidogyne enterolobii development of a SCAR marker for this guava-damaging species. Plant Pathology, 59(6): 1054-1061. https://doi.org/10.1111/j.13 65-3059.2010. 02350.x
- **Tikhonov, V.E.; Lopez-Llorca, L.V.; Salinas, J. and Jansson, H. (2002):**Purification and characterization of chitinases from the nematophagous fungi *Verticillium chladosporium* and *V. suchlasporium*. Fungal Genetics and Biology, 35: 67-78. https://doi. org/10.1006 /fgbi.2001.1312
- van Elsas, J.D. and Migheli, Q. (1999): Evaluation of risks related to the release of biocontrol agents active against plant pathogens. In: Albajes, R.; Lodovica-Gullino, M.; van Lenteren, J.C. and Elad, Y. (eds.) Integrated pest and disease management in greenhouse crops. Kluwer, The Netherlands, pp. 377–393. https://doi.org/10.1007/0-306-47585-5 27
- F.: Nigro, Vinale, Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Varlese, R.; Marra, R.; Lanzuise, S.; Eid, A.; Woo, S.L. and Lorito, M. (2013): Harzianic acid: a novel siderophore from Trichoderma **FEMS** harzianum. Microbiol. Letters, 347(2): 123-9. doi: 10.1111/1574-6968.12231
- Walsh, U.F.; Morrissey, J.P. and O'Gara, F. (2001): Pseudomonas for biocontrol of phytopathogens: from functional genomics to

- commercial exploitation. Current Opin. Biotechnol., 12: 289–295. doi: 10.1016/s0958-1669(00)00212-3
- Welsh, D.T. and Herbert, (1999):Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol. Lett.. 174: 57-63. doi: 10.1111/j.1574-6968. 1999.tb13549.x
- Wendimu, G.Y. (2021): Biology, taxonomy, and management of the Root-Knot nematode (*Meloidogyne incognita*) in sweet potato. Advances in Agriculture, 8820211. https://doi.org/10.1155/2021/8820211
- Wright, S.A.; Zumoff, C.H.; Schneider, L. and Beer, S.V. (2001): Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67(1): 284- 292. https://doi.org/10.1128/AEM.67.1.2 84-292.2001
- Yew, S.; Chan, C.; Ngeow, Y.; Toh, Y.F.; Na, S.L.; Lee, K.W.; Hoh, C.; Yee, W.; Ng, K.P. and Kuan, C.S. (2016): Insight into different environmental niches adaptation and allergenicity from the Cladosporium sphaerospermum genome, common human allergy-eliciting Dothideomycetes. Scientific Reports, 6: 27008. https://doi.org/10.1038/srep27008
- Yu, Z.; Mo, M.; Zhang, Y. and Zhang, K.Q. (2014): Taxonomy of Nematode-Trapping Fungi from Orbiliaceae, Ascomycota. In: Zhang, K.Q. and Hyde, K. (eds) Nematode-Trapping Fungi. Fungal Diversity Research Series, Vol 23. Springer, Dordrecht Pp. 64-183. https://oi.org/10.1007/978-94-017-8730-7_3

- Zeng, Y.; Ye, W. and Kerns, J. (2014): First report and morphological and molecular characterization of *Meloidogyne incognita* from Radermachera sinica in China. Nematropica., 44(2): 118-129.
- Zhang, K.Q. and Hyde, K.D. (2014): Nematode-trapping fungi 1st ED., Springer, the Netherlands, Berlin.
- Zhang, S.; Gan, Y. and Xu, B. (2015):
 Biocontrol potential of a native species of *Trichoderma longibrachiatum* against *Meloidogyne incognita*. Appl. Soil. Ecol., 94: 21- 29. http://dx.doi.org/10.1016/j.apsoil.20 15.04.010
- Zijlstra, C. (2000): Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant 290. Pathology, 106(3): 283https://doi.org/10.1023/A:10087653 03364
- Zin, N.A. and Badaluddin, N.A. (2020): Biological function of *Trichoderma* spp. for agriculture applications. Ann. Agri. Sci., 65: 168-178. https://doi.org/10.1016/j.aoas.2020. 09.003