

Egyptian Journal of Plant Protection Research Institute

www.ejppri.eg.net

Effect of lactic acid on the growth and production of high-quality cocoons in Bombyx mori (Lepidoptera: Bombycidae) silkworm larvae by adding it to their diet Rania, S. Gad

Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.

ARTICLE INFO

Article History Received:20/7 /2025 Accepted:14/9 /2025

Keywords

Silkworm rearing, cocoon production, effect of nutritional supplements, silk quality and lactic acid.

•

Abstract

The silkworm *Bombyx mori* L. (Lepidoptera: Bombycidae) was used to investigate the impact of lactic acid on the growth of silkworm larvae and cocoon quality. In this study, larvae from the first day of the 1st until the end of the 5th instar were fed on mulberry leaves treated with lactic acid as a nutritional supplement with different concentrations (0.1% - 1% - 10%). Results showed that the larvae fed with nutritional supplements of lactic acid (0.1%, 1%) were positively affected in larval weight and length; also, results recorded good cocoon quality in low concentrations of lactic acid (0.1% - 1%). In contrast, lactic acid at high concentration (10%) had a toxic effect, leading to the death of most of the larvae, and negatively affecting cocoon quality. All concentrations have no significant effect on the number of egg/female and the fertility rate%.

Introduction

Sericulture is a method for obtaining silk fiber production. A large number of by-products from sericulture can also be utilized, from silkworm formation to post-cocoon technologies, albeit it is primarily used in the textile industry (Jaiswal et al., 2021). Bombyx mori L. (Lepidoptera: Bombycidae) monophagous insect that feeds on mulberry leaves only during the larval stage (Singhal et al., 1999). Also considered of special importance for biochemical, physiological, developmental biology research due to its short life cycle (Jaing et al., 2020). One of the most important biological properties of the silkworm is its ability to convert plant protein (Mulberry leaves) into silk protein (Ude et al., 2014). Silkworm larvae must be fed with good quality mulberry leaves for high-quality cocoons (Vijaya et al., 2009). Larval growth and production of

depend on high-quality silk different nutrients and quality mulberry leaves presented (Smitha and Rao 2010). It is necessary to pay attention to large-scale rearing of silkworm larvae and provide the labor necessary to promote sericulture industry offered (Saviane et al., 2014 and Shifa, 2016). The artificial diet of silkworm larvae generally includes mulberry leaf powder, soybean, corn powder, cellulose, vitamins, and proteins, which aims to improve the nutritional composition of larvae and works to provide their nutritional needs for growth (Saviane et al., 2014 and Bhatti et al., 2019). Lactic acid, a naturally occurring (3-hydroxy carboxylic acid), is in almost all living things. Commercially, it is a colorless to slightly yellow, hygroscopic liquid that comes in solutions of 50 to 90 weight percent (Jem et al., 2010). Lactic acid is a common occurrence in nature and is

created by a variety of organisms, including bacteria and human cells. pharmaceuticaled in 1780 as a component of sour milk and has since been employed in a variety of products for the food, beverage, pharmaceutical, and cosmetic industries to preserve the microbial stability of lower (PH) products. (Beales, 2004 and Dang *et al.*, 2009).

This study was conducted to investigate the impact of lactic acid on silk products. To know the appropriate concentrations of lactic acid in the diet provided to silkworm larvae, treat mulberry leaves with various concentrations of lactic acid measure the [Fifth instar larval weight, length (cm), cocoon weight (g), cocoon shell weight (g), silk ratio (%), eggs/ female, and fertility rate (%)] of silkworms.

Materials and methods

The current research was conducted in spring in the Sericulture Lab in the Plant Protection Research Institute, Mansoura, Dakahlia.

1. Silkworm resource:

Hybrid silkworm eggs (*B. mori*) were obtained from the Silk Research Department, Plant Protection Research Institute, Agricultural Research Center, Giza, in the spring. Fresh mulberry leaves of *M. alba* var. *Canava*.

2. Preparation of different concentration solutions:

Distilled water was used to dilute obtain different lactic acid to concentrations. (0.1%,1%. 10%) solution. Then. 15 liters supplementation were put in several clean, airtight bottles for use during the experiment (Jiang et al., 2020).

3. Rearing technique:

The rearing laboratory and equipment used in rearing were disinfected with a 5% formaldehyde solution. Newly hatched *B. mori* larvae were placed in plastic trays $(60 \times 90 \times 7 \text{ cm})$. The room temperature was

 $24.9^{\circ}\text{C} \pm 0.118^{\circ}\text{C}$, and the relative humidity was $72.02\% \pm 5.693$, according to techniques (Krishnaswami, 1978).

4. Experimental design:

Silkworm larvae (B. mori) were fed the experiential diet from the 1st day of the first instar until the end of the 5th instar. Larvae were distributed into 3 groups after hatching. Every group consisted of three replicates, each containing 150 larvae in addition to a control. Mulberry leaves should be collected daily in the early morning and immersed in the pre-prepared solution for 15 minutes, and then the silkworm (B. mori) larvae are fed on the treated leaves after they are air-dried four times daily. The control group was fed on clean mulberry leaves soaked in the distilled water.

5. Biology and economy characteristics:

Biological criteria of the larvae of *B. mori* feeding on mulberry leaves treated with different concentrations of the nutritional supplements used in the experiment were recorded. Weight and length of larvae are measured, and collected larvae at the maturity stage are manually transported to montages for spinning cocoon. After a week, collect cocoons and divide them into groups. The first group was dried, and the weight of cocoon (g), the weight of the cocoon shell (g), and the silk ratio (%) were recorded.

The second group, the cocoon left fresh without drying until the butterflies emerge and mate, to record the number of eggs and measure the fertilization ratio.

6. Statistical analysis:

Data was obtained for statistical analysis to identify low and significant differences between treatment and control groups. CoHort Software (2004) was used in all tests by ANOVA

appropriate to Duncan's Multiple Range Test.

Results and discussion:

1. Effect of lactic acid on *Bombyx* mori 5 th larval weight and length:

The larval stage of the silkworm, B. mori, is one of the most important periods for determining growth and development, as the weight of the larvae and length reflect their growth development. This research measured the weight and length of the 5th instar after adding lactic acid as nutritional supplements in different concentrations (0.1%, 1%, and 10%). concentration significantly increased the average larval weight and length compared with other groups.

Although concentration (10%) increased larvae weight and length. However, the average weight recorded

was the lowest compared to other concentrations (Table 1). The larvae feeding mulberry supplemented with high concentrations remained in the larval stage and were only able to spin cocoons in small numbers. These results agreed with Nishida et al., 2016; Li et al., 2017; Zhen et al., 2021 and Deepali et al., 2025. Who reported that one possible reason for these results is that adding lactic acid to mulberry leaves prevents the growth of microorganisms that cause damage to these leaves. Another reason is that lactic acid lowers the larvae's intestinal PH to prevent the production of pathogenic microorganisms. However, preserve a balanced environment, which supports the growth of silkworm larvae.

Table (1): Effect of Lactic acid with different concentrations on larval weight and length on the fifth instar of the silkworm *Bombyx mori*.

Lactic acid concentration	Larval weight (g) Fifth instar	Larval length (cm) Fifth instar
0.1 %	a 5.45	a 8.15
1 %	a5.40	a 8.07
10 %	b5.15	b 7.35
Control (Distilled water)	c 4.8	c 7.05

2. Effects of lactic acid on *Bombyx mori* silk cocoon properties:

In silk production, the weight of cocoons (g), cocoon shells (g), and silk ratios %, are considered important factors that can clarify the economic value of cocoons. The results indicated that adding lactic acid significantly affects the quality of the cocoons' production at concentrations (0.1% -1%) compared to other groups (Table 2). However, a concentration of 10% had a significant negative effect on cocoons'

production; also, the control group better results than this concentration. Results are supported by the observation of Huang et al., 2013; Sekar et al., 2016; Tassoni et al., 2022 and Deepali et al., 2025. Noticing that the cocoon yield was better than another group's, which shows that lactic acid can affect the silk gland's growth and increase the quality of silk proteins in silkworm larvae at low concentrations (0.1%-1%)conversely, high concentrations (10%).

Table (2): Effect of lactic acid with different concentrations on the properties of cocoons on silkworm *Bombvx mori*.

Lactic acid concentration	Cocoon weight	Cocoon shell	Silk ratio %
	(g)	weight (gm)	
0.1 %	a 1.85	a 0.370	a 20.00
1 %	a 1.82	a 0.362	a 19.95
10 %	c 1.65	0.30 с	c 18.20
Control (Distilled water)	b 1.72	b 0.330	b 19.50

3. Effects of lactic acid on the egg/female and fertility percentage of *Bombyx mori*:

The results showed that nutrition supplementation had no effect on the number eggs/female and fertility% in all concentrations. No significant difference was observed in the number of eggs laid between the test and control

groups. The same in the fertilization (Table 3). Results showed that all various concentrations do not cause any change in regulating female fertility. The current study showed results consistent with Zhen *et al.*, 2021; Niharika *et al.*, 2022 and Iman *et al.*, 2025

Table (3): Effect of lactic acid with different concentrations on the number of egg/female and fertility% of the silkworm *Bombyx mori*.

Lactic acid concentration	Egg/ female	Fertility %
0.1 %	612a	a 98.92
1 %	615a	a 98.90
10 %	608a	a 98.85
Control (Distilled water)	a 600	a 98.88

The mulberry silkworm B. mori is extremely sensitive to environmental change and additives in mulberry leaves for nutrition. One of the most important stages of silk production is the larval stage, as the weight of the larvae indicates the growth of the larvae and their ability to produce high-quality cocoons. In the present study, we effect inspected the of lower concentration on increasing weight, length of larvae B. mori weight of cocoons, cocoon shell weight, and silk ratio. Although a high concentration of 10% negatively affects the cocoon Subsequently, characters. concentrations of lactic acid help larvae grow and evolve and produce better quality cocoons. unlike higher concentrations.

References

Beales, N. (2004): Adaptation of microorganisms to cold temperatures, weak acid preeservatives, low PH, and osmotic stress: a review. Compr. Rev. Food. Sci. F. ,3:1-20. doi: 10.1111/j.1541-4337. 2004.tb00057.x

Bhatti, M. F.; Shazadi, N.; Tahir, H. M.; Ali, S.; Zahid, M. and Khurshid, R. (2019): Effect of honey (Apisdorsata) (Hymenoptera: Apidae) on larval growth and silk cocoon yield of Bombyx mori

(Lepidoptera: Bombycidae). J. Insect Sci., 19:1-5. doi: 10.1093/jisesa/iez108

CoHort Software (2004): CoStat. www.cohort.com Montery, California, USA.

Dang, T. D.; Vermeulen, A.; Ragaert, P. and Devlieghere, F. (2009): A peculiar stimulatory effect of acetic and lactic acid on growth and fermen -tative metabolism of *Zygosaccharomyces bailii*. Food Microbiol0, 26:320-327. doi: 10.1016/j.fm.2008.12.002

Deepali, Sambyal; Aneesh, Kumar; Ashvika, Pathania; Monika; Anjli, Thakur; Manita, Devi; Arti and Priya (2025): Effect of dietary lactic acid, folic acid and sucrose supplement on growth and cocoon quality of *Antheraea proylei*. International Journal of Agriculture and Food Science, 7 (4): 155-164. https://doi.org/10.33545/2664844X. 2025.v7.i4c.347

Huang, X. Z.; Qin, J. and Xiang, Z. H. (2013): The effort to revitalize silk industry in Japan and its inspiration to the transformational development of Chinese silk industry. Sci. Seri., 39: 599–605.

Iman, A.; Atia, A. and Hisham, ALraz. (2025): The effect of some nutritional supplements on the

- biological and productive characteristics of the silkworm (*Bombyx mori* L.). Arab Journal of Plant Protection, 43 (1): 10-116.
- Jaing, L.; Peng, L. L.; Cao, Y. Y.; Thakur, K.; Hu, F.; Tang, S. M. and Wei, Z. J. (2020): Effect of dietary selenium supplementation on growth and reproduction of silkworm *Bombyx mori* L. Biol. Trace. Res. Res.,193: 271-281. doi:10.1007/s12011-019-01690-x
- Jaiswal, K. K.; Banerjee, I. and Mayookha, V. P. (2021): Recent trends in the development and diversification of natural sericulture products for innovative and sustainable applications. Bioresource Technology Reports, 1 (13): 100614. https://doi.org/10.1016/j.biteb.2020. 100614
- Jem, K. J. Pol, J. F. and Vos, S. (2010): Microbial lactic acid, its polymer (Lactic acid), and their industrial applications. In: Plastics from Bacteria. Natural Functions and Applications, 323-346.
- Jiang, L.; Peng, L.; Cao, Y. Y.; Thakur, K.; Hu, F.; Tang, S. M. and Wei, Z. (2020): Transcriptome analysis reveals gene expression changes of the fat body of silkworm (*Bombyx mori* L.) in response to selenium treatment. Chemosphere, 245, 125660. https://doi.org/10.1016/j.chemosphere.2019.125660
- Krishnaswami, S. (1978): New technology of silkworm rearing Central Sericulture Research and Trainig. Inst., Maysore Bull., (2): 1-10.
- Li,Y. J.; Su, W. Z.; Hu, K. K.; Li, P. C.; Liu,W. and Yao H. (2017): Lactobacillus Plantarum promotes the growth and development of Drosophila melanogaster Acta Entomol. Sin., 60: 544-552.

- Niharika, K. P. A.; Bovillac, V. R. and Mamillapalli, A. (2022): The effect of biovine milk on the growth of *Bombyx mori* L. Journal of Insect Science, 13:(98).1-7. doi:10.1673/031.013.9801
- Nishida, S.; Ono, Y. and Sekimizu, K. (201): Lactic acid bacteria activating innate immunity improves survival in bacterial infection model of silkworm. Drug Discover. Ther.,10: 49-56. doi: 10.5582/ddt.2016.01022.
- Saviane, A.; Toso, L.; Righi, C.; Pavanello, C.; Crivellaro, V. and Cappellozza, S. (2014): Rearing of monovoltine strains *Bombyx mori* L. by alternating artificial diet and mulberry leaf accelerates selection for higher food conversion efficiency and silk productivity. Bull. Insectology, 67: 167-174.
- Sekar, P.; Kalpana, S. G.; George, J.; Kannadasan, N. and Krishnamoorthy, R. (2016): Studies on the growth parameters (Length and weight) and cocoon production in Bombyx mori L. fed on mulberry leaves fortified with a putative probiont, Lactobacillus International casie. Journal Current Research, 8:29127-291332.
- Shifa, V. J. (2016): Influence of supplementation of *Zea mays* flour on the growth and economic traits of silkworm, *Bombyx mori* L. IRA- Int. J. Appl. Sci., 3: 2455-4499. doi: http://dx.doi.org/10.21013/jas.v3.n3.p17
- Singhal, B. K.; Mala, V. R.; Sarkar, A. and Datta, R. K. (1999): Nutritional disorders of mulberry (*Mours* spp.) III. Leaf nutrient guide for secondary nutrients. Ser. Icolobia, 39 (40): 599-609.
- Smitha, S. and Rao, A. V. B. (2010): Effects of selenium on the physiology of heartbeat, oxygen consumption and growth in silkworm *Bombyx mori* L.

- American-Eurasian. J. Toxicol. Sci., 2: 215-219.
- Tassoni, L.; Cappellozza, S.; Dalle Z otteA.; Belluco, S.; Antonelli, P.; Marzoli, F.and Saviane, A. (2022): Nutritional composition of *Bombyx mori* pupae: A systematic review. Insects, 13(7): 644. doi: 10.3390/insects13070644.
- Ude, A. U.; Eshkoor, R. A.; Zulkifili, R.; Ariffin, A. K.; Dzuradiah, A. W. and Azhari, C. H. (2014): Bombyx mori silk fiber and its composite: A review of contemporary developments. Mater. Des., 57: 298-305. https://doi.org/10.1016/j.matdes.2013.12.052
- Vijaya, D.; Yeledhali, N. A.; Ravi, M. V.; Nagangoud, A. and Nagalikar, V. P. (2009): Effect of fertilizer levels and foliar nutrients on M-5 mulberry leaf nutrients content, quality and cocoon production. Karnataka. J. Agric. Sci., 22 (5): 1006-1012.
- Zhen, He.; Fang, Y.; LD.i.; Chen, D. and Wu, F. (2021): Effect of lactic acid supplementation on the growth of *Bombyx mori* L. (Lepidopteria: Bombycidae). Journal of Insect Science, 21 (2): 1-6. doi: 10.1093/jisesa/ieab018